气瓶用热轧型钢及其生产方法

文档序号:3294052阅读:162来源:国知局
专利名称:气瓶用热轧型钢及其生产方法
技术领域
本发明属于冶金领域,具体涉及一种气瓶用热轧型钢及其生产方法。
背景技术
钢质无缝气瓶广泛应用于化工、冶金、机械、医疗、建筑、军工、汽车等行业,尤其是军工、汽车等行业气瓶的服役条件恶劣,其基准工作压力达20Mpa以上,在-50 60°C温度区间工作,频繁充装各种气体及移动,安全性要求极高。采用一般的CrMo钢制造的钢瓶,钢的强度勉强满足气瓶的使用要求,但是冲击韧性尤其是低温冲击性能偏低,波动大,严重危害气瓶的使用安全。GB24160《钢内胆环向缠绕玻璃纤维复合材料车用压缩天然气气瓶》规定CNG 气瓶应采用优质铬钼钢制造,钢的化学成分为C彡0. 37%、Si 0. 15% -0. 37%, Mn 0. 40 % -0. 90 %、CrO. 80 % -1. 20 %, Mo 0. 15 % -0. 35 %, P ^ 0. 020 %, S ^ 0. 020 %、 P+S ^ 0. 030% ,Cu ^ 0. 20%。该标准是根据CNG汽车的不同使用要求确定的成分,范围较宽,实际生产中既要保证钢的强度,又要保证钢的冲击性能尤其是低温冲击韧性,控制起来较难。要提高CNG钢瓶强度和低温冲击韧性,一方面要保证钢中C、Si、Mn、Cr、Mo有一定的含量,另一方面降低P、S含量,提高钢的洁净度。采用现有技术生产的30CrMo气瓶钢,钢的P、S有害元素含量及非金属夹杂含量较高,钢的强度高,但是塑性、冲击性能偏低,波动大,尤其是低温冲击性能低,难于满足高压气瓶的使用条件。CN101818309A公开了一种气瓶钢及其制造方法,气瓶钢的成分为C 0. 32-0. 36%、SiO. 20-0. 35 %、Mn 0. 70-0. 90%, Cr 0. 90-1. 10%, Mo 0. 40-0. 50%, Ti 0. 01-0. 03%,P ^ 0. 015,S ^ 0. 010,0 0. 0020%,其余为!^e。制造方法包括下述步骤(1) 在EBT电炉中冶炼预处理铁水;(2)进LF炉前喂Al线,精炼时造弱电石渣进行还原,根据成份要求微调钢液成份;(3) VD真空脱气将钢包吊入真空罐进行真空脱气,并喂Al线、喂 Si-Ca线;(4)浇注成钢锭;(5)将钢锭加热到1200士20°C; (6)轧制成钢坯;(7)将钢坯堆冷到室温;(8)钢坯精整将钢坯修磨,确保钢坯表面无裂纹缺陷。用本发明制的气瓶钢,抗拉强度Rm达1120-1250MPa,并且断后延伸率A达14 18%。该专利公布的钢的C、Si、Mn、 Cr、Mo、P、S与本发明完全不同,,且该发明还加入了 0.01-0. 03%的Ti,采用电炉冶炼,效率低,成本高。CN101701277A公开了一种用转炉工艺冶炼气瓶钢圆坯的方法,主要为解决电弧炉工艺冶炼气瓶钢的不足,提供一种用高炉炼铁一转炉一LF精炼一VD真空精炼一连铸工艺冶炼30CrMo气瓶用无缝钢管用圆坯的方法。具体包括,铁水采用喷吹颗粒镁工艺进行脱硫预处理,转炉采用顶底复吹,用低氧压、大流量供氧制度;LF精炼采用高碱度白渣精炼工艺,白渣精炼20-30分钟,LF精炼处理在35-45分钟,到VD精炼站的温度为1615士5°C ;在 VD精炼中,使用< 67 真空度下保持10-15分钟,同时采用软吹氩搅拌,使钢水出VD站氢含量控制在0-2ppm,钢水到达连铸台的温度为1570士5°C ;连铸采取保护浇注,钢水过热度控制在20-40°C,拉速为1.5-3. 2m/min,同时使用结晶器电磁搅拌技术。采用本发明工艺生产的管坯,提高了钢水的纯净度,减轻微量残余元素带来的危害,提高了气瓶钢的性能。该发明生产的气瓶钢的化学成分与本发明相当,但是生产工艺略有不同,该发明采用的是VD 真空精炼和圆坯连铸,而本发明采用的是RH真空精炼和大方坯连铸,在钢材洁净度控制及生产效率方面大大优于该发明。

发明内容
本发明要解决的技术问题是提高气瓶钢的质量及综合力学性能,确保气瓶使用过程的安全。本发明解决上述技术问题的技术方案是提供一种气瓶用热轧型钢,其重量百分比组成为C 0. 25-0. 32 %、Si 0. 15-0. 35 %、Mn 0. 40-0. 60 Cr 0. 80-1. 05 %、Mo 0. 15-0. 25%, Al 0. 02-0. 04%, P 彡 0. 015%, S 彡 0. 015%, P+S 彡 0. 020%, Ni 彡 0. 2%, Cu 彡 0. 15%,Sn^O. 015%,As 彡 0. 015%,H^ 0. 0002%,N^ 0. 009%, T
彡 0. 0020%,
余量为铁。进一步的,上述气瓶用热轧型钢中的下述成分的重量百分比组分为C 0.29-0.32 %、SiO. 20-0. 30 Mn 0.5-0.7 Cr 0.95-1.05 Mo 0.17-0.25
P 彡 0. 015%, S 彡 0. 010%。本发明还提供了一种制备上述气瓶用热轧型钢的方法。该方法包括以下步骤a、转炉吹炼;转炉吹炼时控制吹炼终点的C重量含量控制在0. 05 0. 20%、P重量含量控制在P < 0. 015%、S重量含量控制在015% ;然后在出钢时进行增碳和合金化,使得在该步骤得到的钢水中,以钢水总重量计=C 0. 20-0. 26%, Si 0. 15-0. 3%, Mn 0. 45-0. 65%, Cr 0. 9-1. 05%,Mo 0. 17-0. 25% ;b、钢包精炼;在钢包精炼中加入金属铝和精炼渣,控制钢包渣碱度在2. 0-3. 5之间,使钢水中的S重量含量在0.010%以下C、真空精炼;使在该步骤获得的钢水中,以钢水总重量计C 0. 25-0. 32%, Si 0. 15-0. 35%, Mn 0. 40-0. 60%, Cr 0. 80-1. 05%,Mo 0. 15-0. 25%, Al 0. 02-0. 04% ;d、连铸;控制铸坯拉速在0. 45-0. 70m/min ;e、钢坯轧制;加热温度1220-1300°C,均热温度1230_U80°C,总加热时间彡4. 5h。其中,上述气瓶用热轧型钢的制备方法中所述真空精炼步骤获得的钢水中,以钢水总重量计C 0. 29-0. 32%, Si 0. 20-0. 30%, Mn 0. 5-0. 7%, Cr 0. 95-1. 05 Mo 0. 17-0. 25%,A10. 02-0. 04%。其中,上述气瓶用热轧型钢的制备方法中所述精炼渣为石灰加萤石,石灰与萤石的配比为5 1。其中,上述气瓶用热轧型钢的制备方法中所述转炉吹炼步骤中,出完钢后采用 0. 4-0. 9MPa的压力对钢包进行吹氩,吹氩时间为6_20min。其中,上述方法制备得到的气瓶用热轧型钢的重量百分比组分为C 0. 25-0. 32%、SiO. 15-0. 35%、Mn 0. 40-0. 60%, Cr 0. 80-1. 05%, Mo 0. 15-0. 25%, Al 0. 02-0. 04 %、P 彡 0. 015 %、S 彡 0. 015 %、P+S 彡 0. 020 %、Ni 彡 0. 2 %、Cu 彡 0. 15 %、 Sn 彡 0. 015%, As 彡 0. 015%, H 彡 0. 0002%, N 彡 0. 009%, T
彡 0. 0020%,余量为铁。进一步的,上述方法制备得到的气瓶用热轧型钢的下述成分重量百分比为下述成分的重量百分比组分为C 0. 29-0. 32%, Si 0. 20-0. 30%, Mn 0.5-0.7%、Cr 0. 95-1. 05%, Mo 0. 17-0. 25%、P彡0. 015%、S彡0. 010%。按照夹杂物评级标准GB/T10561评价,上述气瓶用热轧型钢中的A类夹杂物为彡1.5级、B类夹杂物为彡1.5级、C类夹杂物为彡1.5级、D 类夹杂物为< 1.5级。本发明通过控制钢中C、Si、Mn、Cr、Mo的含量在适当的范围,钢材具有一定的淬透性和强度,同时降低P、S、T
及非金属夹杂物的含量,按照夹杂物评级标准GB/T10561评价出该气瓶钢中的A类夹杂物为< 1.5级、B类夹杂物为< 1.5级、C类夹杂物为< 1.5级、 D类夹杂物为< 1.5级。从而使钢材的抗疲劳破坏能力、抗腐蚀能力及低温冲击性能等得到改善,生产的气瓶钢具有优良的综合力学性能。本发明的气瓶钢的抗拉强度可以达到960-1050兆帕,伸长率A可以达到 15. 5-19.0%, -50°C横向冲击性能可以达到60-80焦耳/平方厘米。本发明钢只需通过简单的1次调质热处理后,就能获得很好的综合机械性能,大大提高了气瓶的使用安全,具有工艺简单,节省能源等优点。
具体实施例方式本发明上述气瓶用热轧型钢的生产方法包括转炉冶炼-钢包精炼-真空精炼-大方坯连铸-钢坯轧制等步骤;所述转炉吹炼步骤中,吹炼终点C重量含量控制在 0. 05 0. 20%, P重量含量控制在P < 0. 015%, S重量含量控制在S彡0. 015%,然后在出钢过程中将增碳剂、预脱氧剂、精炼渣(石灰+萤石,石灰与萤石的配比为5 1)、 硅铁合金、锰铁合金、铬铁合金和钼铁合金加入到钢包中,使得在该步骤得到的钢水中, 以钢水总重量计C 0. 20-0. 26%, Si 0.15-0. 3%、Mn 0. 45-0. 65%, Cr 0. 9-1. 05%, Mo 0. 17-0. 25% ;出完钢后采用0. 4-0. 9MPa的压力对钢包进行吹氩,吹氩时间为6_20min ; 所述钢包精炼步骤中,加入一定的金属铝和精炼渣(石灰+萤石,石灰与萤石的配比为 5 1),控制钢包渣碱度在2. 0-3. 5之间,使钢水中的S含量在0.010重量%以下;所述真空精炼步骤中包括在真空条件下将增碳剂、硅铁合金、锰铁合金、铬铁合金、钼铁合金以及金属铝在真空条件下与钢包精炼得到的钢水接触,使在该步骤获得的钢水中,以钢水总重量计:C 0. 25-0. 32%, Si 0. 15-0. 35%, Mn 0. 40-0. 60%, Cr 0. 80-1. 05%, Mo 0. 15-0. 25%, Al 0.02-0.04%。优选为 C 0. 29-0. 32%、Si 0. 20-0. 30%, Mn 0. 5-0. 7%, Cr 0. 95-1. 05%, Mo 0. 17-0. 25%, Al 0. 02-0. 04% ;所述大方坯连铸步骤中,从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸。控制铸坯拉速在0. 45-0. 70m/min ;所述钢坯轧制步骤中,控制加热温度1220-1300°C,均热温度1230-U80°C,总加热时间彡4.釙。为了控制本发明提供的气瓶钢中杂质Ni、Cu、As和Sn的含量,可以选择Ni含量 < 0. 2重量%、Cu含量< 0. 2重量%、As含量< 0. 05重量%、Sn含量< 0. 05重量%的铁水或废钢作为原料。并且,采用脱硫后的铁水冶炼气瓶钢,控制入炉铁水的S含量小于等于 0. 015 重量 %。在所述转炉冶炼步骤中,采用氧气顶吹转炉按照本领域常规的方法进行吹炼。吹炼前期造渣脱磷,控制吹炼终点渣的碱度为4. 0-5. 0,以铁水总重量为基准,将所述吹炼终
5点的C含量控制在0. 05-0. 20重量%,并控制吹炼终点的钢水中P含量< 0. 015重量%,S含量< 0. 015重量% ;然后在出钢过程中,按照本领域常规的方法,将增碳剂、预脱氧剂、精炼渣(石灰+萤石,石灰与萤石的配比为5 1)、硅铁合金、锰铁合金、铬铁合金和钼铁合金加入到钢包中,使得在该步骤得到的钢水中,以所述钢水总重量为基准,C含量为0. 20-0. 26 重量%、Si含量为0. 15-0. 3重量%、Mn含量为0. 45-0. 65重量%、Cr含量为0. 9-1. 05重量%、Mo含量为0. 17-0. 25重量% ;所述预脱氧剂的加入量可以为本领域的常规加入量,优选为铝铁合金,相对于每吨钢水,预脱氧剂的加入量为2. 0-4. 0千克,控制钢水氧活度小于 0.0030%。也可以采用硅钙钡合金和铝锰铁合金中的一种或几种作为预脱氧剂。所述精炼渣为本领域常见的一种高碱度渣,相对于每吨钢水,精炼渣的加入量为5. 5-7. 0千克。出完钢后采用0. 8MPa的恒定压力对钢包进行吹氩,吹氩时间为6-20min。所述钢包精炼是在具备加热功能的LF炉中进行,钢水进站后先加热化渣,然后根据钢水S含量加入一定的金属铝和精炼渣(石灰+萤石,石灰与萤石的配比为5 1),所述精炼渣的用量为相对于每吨钢水2. 5-6. 0千克,铝丸的用量为相对于每吨钢水0. 2-0. 4千克,控制钢包渣的碱度为2. 0-3. 5,LF钢包精炼的温度为1615-1655°C,精炼的时间为15-40 分钟,使精炼后钢水中的S含量在0. 010重量%以下;所述真空精炼为真空循环脱气法(RH),包括在真空条件下将增碳剂、硅铁合金、 锰铁合金、铬铁合金、钼铁合金以及金属铝在真空条件下与钢包精炼得到的钢水接触,使在该步骤获得的钢水中,C含量为0. 29-0. 32重量%、Si含量为0. 20-0. 30重量%、Mn含量为0. 5-0. 7重量%、Cr含量为0. 95-1. 05重量%、Mo含量为0. 17-0. 25重量%、Al含量为 0. 02-0. 04重量%。所述真空精炼的条件包括真空度在500帕以下,真空精炼后的温度为 1560-1580°C,真空精炼时间为10-18分钟。所述大方坯连铸步骤中,从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸,防止钢液裸露产生二次氧化;控制浇注时钢水过热度为20-40°C,钢水温度为1525-1545°C ;控制铸坯拉速在 0. 40-0. 70m/min,稳定拉速,防止结晶器液面的波动。在所述钢坯轧制的步骤中,控制加热温度1220_1300°C,均热温度1230-U80°C, 总加热时间< 4.证。钢坯轧制后,采用常规的方法冷却即可,如采用堆垛空冷方式冷却。上述方法制备得到的气瓶用热轧型钢的重量百分比组分为C 0. 25-0. 32%, SiO. 15-0. 35%, Mn 0. 40-0. 60%, Cr 0. 80-1. 05%, Mo 0. 15-0. 25%, Al 0. 02-0. 04%、 P 彡 0. 015 %、S 彡 0. 015 %、P+S 彡 0. 020 %、Ni 彡 0. 2 %、Cu 彡 0. 15 %、Sn 彡 0. 015 %、 As ^ 0. 015%, H ^ 0. 0002%, N ^ 0. 009%, T
彡 0. 0020%,余量为铁。优选的,上述方法制备得到的气瓶用热轧型钢的下述成分重量百分比为下述成分的重量百分比组分为C 0. 29-0. 32%, Si 0. 20-0. 30%, Mn 0. 5-0. 7%, CrO. 95-1. 05%, Mo 0. 17-0. 25%, P彡0. 015%,S彡0. 010%。按照夹杂物评级标准GB/T10561评价,上述气瓶用热轧型钢中的A类夹杂物为< 1.5级、B类夹杂物为< 1.5级、C类夹杂物为< 1.5级、D类夹杂物为 (1.5 级。下面结合实施例对本发明进行详细说明。各实施例控制的具体数值如表1所示。实施例1气瓶用热轧型钢的生产将脱硫后的铁水倒入氧气顶吹转炉进行吹炼,以钢水总重量为基准,当钢水中C含量为0. 07重量%、P含量为0. 009重量%、S含量为0. 009重量%时立即出钢到钢包中。 出钢时,相对于每吨钢水,先加无烟煤2. 1千克(C含量为>93重量%)进行增碳,出钢1/3 后,相对于每吨钢水,先在钢包中加入预脱氧剂铝铁合金(Al含量为40重量%,安阳市恒旺冶金耐材有限公司)3. 3千克,然后相对于每吨钢水,加入精炼渣5. 8千克、Fe-Si (Si含量为 74重量%,安阳市恒旺冶金耐材有限公司)1. 9千克、Mn-Si (Mn含量为彡68%,攀枝花攀宏冶金制品有限公司)6. 7千克、Fe-Cr (Cr含量为61 %,攀枝花攀宏冶金制品有限公司)15. 2 千克、!^e-Mo (Mo含量为60重量%,攀枝花攀宏冶金制品有限公司)3. 2千克,进行Si、Mn、 Cr、Mo元素的合金化,使所得钢水中,以钢水的总重量为基准,C含量为0.沈重量%、Si含量为0. 20重量%、Mn含量为0. 47重量%、Cr含量为0. 94重量%、Mo含量为0. 18重量%。然后,对钢包内的钢水进行吹氩精炼,吹氩精炼的时间为15分钟,氩气吹入压力为0. SMPa ;当钢水送到LF炉(带电加热的130吨钢包精炼炉)后,先加热化渣,然后相对于每吨钢水,加入精炼渣4. 0千克和铝丸0. 26千克,加热钢水到1650°C,LF精炼共进行25 分钟,然后将LF精炼后的钢水立即送到RH真空装置(带成分微调和真空循环脱气的钢包精炼炉)进行真空处理,真空精炼的开始温度为1620°C,钢水真空处理5分钟,当真空度控制在300帕以下后,加入铝丸、碳粉、Fe-Si je-Mn、Fe-Cr、Fe-Mo等合金对钢水成分进行微调,使所得钢水中,以钢水的总重量为基准,C含量为0. 30重量%、Si含量为0. 29重量%、 Mn含量为0. 57重量%、Cr含量为0. 95重量%、Mo含量为0. 18重量%、A1含量为0. 025重量%、P含量为0. 010重量%、S含量为0. 006%,H含量为0. 0001重量%、Ni含量为0. 04 重量%、Cu含量为0. 05重量%、As含量为0. 006重量%、Sn含量为0. 005重量%、N含量为0. 0057重量%。RH真空精炼共进行18分钟,RH真空精炼结束后的温度为1579°C。将真空精炼后的钢水进行浇铸(大方坯连铸)得到钢坯,连铸全过程采用保护浇铸,即从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸,钢水平均浇铸温度为1540°C。采用推钢式加热炉加热钢坯到1300°C,然后在1280°C温度下保温2小时,总加热时间为3. 6小时。然后开始轧制CNG气瓶用方坯或圆钢坯,轧后采用堆垛空冷方式进行冷却。各成分的检测方法分别为碳素钢和中低合金钢火花源原子发射光谱分析方法,国家标准为GB/T4336。氧、氮含量的检测方法为脉冲加热惰气熔融-红外线吸收法,国家标准为GB/T1U61。检测结果如表2所示。实施例2气瓶用热轧型钢的生产将脱硫后的铁水倒入氧气顶吹转炉进行吹炼,以钢水总重量为基准,当钢水中C 含量为0. 06重量%、P含量为0. 011重量%、S含量为0. 009重量%时立即出钢到钢包中。 出钢时,相对于每吨钢水,先加无烟煤1. 9千克(C含量为> 93重量% )进行增碳,出钢1/3 后,相对于每吨钢水,先在钢包中加入预脱氧剂铝铁合金(Al含量为40重量%,安阳市恒旺冶金耐材有限公司)3. 2千克,然后相对于每吨钢水,加入精炼渣6. 4千克、Fe-Si (Si含量为 74重量%,安阳市恒旺冶金耐材有限公司)2.0千克、Mn-Si (Mn含量为彡68%,攀枝花攀宏冶金制品有限公司)6. 6千克、Fe-Cr (Cr含量为63%,攀枝花攀宏冶金制品有限公司)15. 7 千克、!^e-Mo (Mo含量为60重量%,攀枝花攀宏冶金制品有限公司)3. 4千克,进行Si、Mn、 Cr、Mo元素的合金化,使所得钢水中,以钢水的总重量为基准,C含量为0. 23重量%、Si含量为0. 16重量%、Mn含量为0. 46重量%、Cr含量为1. 04重量%、Mo含量为0. 22重量%。然后,对钢包内的钢水进行吹氩精炼,吹氩精炼的时间为14分钟,氩气吹入压力为0. SMPa ;当钢水送到LF炉(带电加热的130吨钢包精炼炉)后,先加热化渣,然后相对于每吨钢水,加入精炼渣3. 0千克和铝丸0. 30千克,加热钢水到1643°C,LF精炼共进行31 分钟,然后将LF精炼后的钢水立即送到RH真空装置(带成分微调和真空循环脱气的钢包精炼炉)进行真空处理,真空精炼的开始温度为1627°C,钢水真空处理5分钟,当真空度控制在300帕以下后,加入铝丸、碳粉、Fe-Si je-Mn、Fe-Cr、Fe-Mo等合金对钢水成分进行微调,使所得钢水中,以钢水的总重量为基准,C含量为0. 30重量%、Si含量为0. 26重量%、 Mn含量为0. 5重量%、Cr含量为1. 04重量%、Mo含量为0. 22重量%、A1含量为0. 031重量%、P含量为0. 012重量%、S含量为0. 004%,H含量为0. 00012重量%、Ni含量为0. 04 重量%、Cu含量为0. 04重量%、As含量为0. 007重量%、Sn含量为0. 005重量%、N含量为0. 0065重量%。RH真空精炼共进行18分钟,RH真空精炼结束后的温度为1575°C。将真空精炼后的钢水进行浇铸(大方坯连铸)得到钢坯,连铸全过程采用保护浇铸,即从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸,钢水平均浇铸温度为1543°C。采用推钢式加热炉加热钢坯到1297°C,然后在1275°C温度下保温2. 5小时,总加热时间为4. 2小时。然后开始轧制CNG气瓶用方坯或圆钢坯,轧后采用堆垛空冷方式进行冷却。各成分的检测方法分别为碳素钢和中低合金钢火花源原子发射光谱分析方法,国家标准为GB/T4336。氧、氮含量的检测方法为脉冲加热惰气熔融-红外线吸收法,国家标准为GB/T1U61。检测结果如表2所示。实施例3气瓶用热轧型钢的生产将脱硫后的铁水倒入氧气顶吹转炉进行吹炼,以钢水总重量为基准,当钢水中C 含量为0. 06重量%、P含量为0. 008重量%、S含量为0. 01重量%时立即出钢到钢包中。 出钢时,相对于每吨钢水,先加无烟煤2. 2千克(C含量为>93重量%)进行增碳,出钢1/3 后,相对于每吨钢水,先在钢包中加入预脱氧剂铝铁合金(Al含量为40重量%,安阳市恒旺冶金耐材有限公司)3. 1千克,然后相对于每吨钢水,加入精炼渣5. 8千克、Fe-Si (Si含量为74重量%,安阳市恒旺冶金耐材有限公司)2. 1千克、Mn-Si (Mn含量为彡68.0%,攀枝花攀宏冶金制品有限公司)6. 7千克、Fe-CHCr含量为61 %,攀枝花攀宏冶金制品有限公司)16. 0千克、Fe-Mo (Mo含量为60重量%,攀枝花攀宏冶金制品有限公司)3. 2千克,进行 Si、Mn、Cr、Mo元素的合金化,使所得钢水中,以钢水的总重量为基准,C含量为0. 26重量%、 Si含量为0. 17重量%、Mn含量为0. 47重量%、Cr含量为0. 98重量%、Mo含量为0. 19重量%。然后,对钢包内的钢水进行吹氩精炼,吹氩精炼的时间为16分钟,氩气吹入压力为0. SMPa ;当钢水送到LF炉(带电加热的130吨钢包精炼炉)后,先加热化渣,然后相对于每吨钢水,加入精炼渣5. 9千克和铝丸0. 3千克,加热钢水到1635°C,LF精炼共进行15 分钟,然后将LF精炼后的钢水立即送到RH真空装置(带成分微调和真空循环脱气的钢包精炼炉)进行真空处理,真空精炼的开始温度为1612°C,钢水真空处理5分钟,当真空度控制在300帕以下后,加入铝丸、碳粉、Fe-Si、Fe-Mn、Fe-Crie-Mo等合金对钢水成分进行微调,使所得钢水中,以钢水的总重量为基准,C含量为0. 32重量%、Si含量为0. 27重量%、 Mn含量为0. 54重量%、Cr含量为0. 98重量%、Mo含量为0. 20重量%、A1含量为0. 03重量%、P含量为0. 008重量%、S含量为0. 007%,H含量为0. 00015重量%、Ni含量为0. 04 重量%、Cu含量为0. 04重量%、As含量为0. 006重量%、Sn含量为0. 005重量%、N含量为0. 0058重量%。RH真空精炼共进行14分钟,RH真空精炼结束后的温度为1571°C。将真空精炼后的钢水进行浇铸(大方坯连铸)得到钢坯,连铸全过程采用保护浇铸,即从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸,钢水平均浇铸温度为1532°C。采用推钢式加热炉加热钢坯到1290°C,然后在1270°C温度下保温1. 9小时,总加热时间为3. 8小时。然后开始轧制CNG气瓶用方坯或圆钢坯,轧后采用堆垛空冷方式进行冷却。各成分的检测方法分别为碳素钢和中低合金钢火花源原子发射光谱分析方法,国家标准为GB/T4336。氧、氮含量的检测方法为脉冲加热惰气熔融-红外线吸收法,国家标准为GB/T1U61。检测结果如表2所示。实施例4气瓶用热轧型钢的生产将脱硫后的铁水倒入氧气顶吹转炉进行吹炼,以钢水总重量为基准,当钢水中C 含量为0. 12重量%、P含量为0. 006重量%、S含量为0. 007重量%时立即出钢到钢包中。 出钢时,相对于每吨钢水,先加无烟煤1.25千克(C含量为>93重量%)进行增碳,出钢1/3 后,相对于每吨钢水,先在钢包中加入预脱氧剂铝铁合金(Al含量为40重量%,安阳市恒旺冶金耐材有限公司)3. 7千克,然后相对于每吨钢水,加入精炼渣6. 9千克、Fe-Si (Si含量为 74重量%,安阳市恒旺冶金耐材有限公司)2. 0千克、Mn-Si (Mn含量为彡68%,攀枝花攀宏冶金制品有限公司)6. 8千克、Fe-Cr (Cr含量为63%,攀枝花攀宏冶金制品有限公司)15. 6 千克、!^e-Mo (Mo含量为60重量%,攀枝花攀宏冶金制品有限公司)3. 6千克,进行Si、Mn、 Cr、Mo元素的合金化,使所得钢水中,以钢水的总重量为基准,C含量为0. 23重量%、Si含量为0. 19重量%、Mn含量为0. 44重量%、Cr含量为0. 99重量%、Mo含量为0. 20重量%。然后,对钢包内的钢水进行吹氩精炼,吹氩精炼的时间为15分钟,氩气吹入压力为0. SMPa ;当钢水送到LF炉(带电加热的130吨钢包精炼炉)后,先加热化渣,然后相对于每吨钢水,加入精炼渣3. 0千克和铝丸0. 25千克,加热钢水到1639°C,LF精炼共进行20 分钟,然后将LF精炼后的钢水立即送到RH真空装置(带成分微调和真空循环脱气的钢包精炼炉)进行真空处理,真空精炼的开始温度为1618°C,钢水真空处理5分钟,当真空度控制在300帕以下后,加入铝丸、碳粉、Fe-Si je-Mn、Fe-Cr、Fe-Mo等合金对钢水成分进行微调,使所得钢水中,以钢水的总重量为基准,C含量为0. 31重量%、Si含量为0. 24重量%、 Mn含量为0. 51重量%、Cr含量为0. 99重量%、Mo含量为0. 23重量%、A1含量为0. 036重量%、P含量为0. 011重量%、S含量为0. 004%,H含量为0. 00013重量%、Ni含量为0. 05 重量%、Cu含量为0. 04重量%、As含量为0. 007重量%、Sn含量为0. 005重量%、N含量为0. 0060重量%。RH真空精炼共进行16分钟,RH真空精炼结束后的温度为1580°C。将真空精炼后的钢水进行浇铸(大方坯连铸)得到钢坯,连铸全过程采用保护浇铸,即从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸,钢水平均浇铸温度为1542°C。
采用推钢式加热炉加热钢坯到1290°C,然后在1275°C温度下保温2. 0小时,总加热时间为4. 0小时。然后开始轧制CNG气瓶用方坯或圆钢坯,轧后采用堆垛空冷方式进行冷却。各成分的检测方法分别为碳素钢和中低合金钢火花源原子发射光谱分析方法,国家标准为GB/T4336。氧、氮含量的检测方法为脉冲加热惰气熔融-红外线吸收法,国家标准为GB/T1U61。检测结果如表2所示。对比例(现有技术)将脱硫后的铁水倒入氧气顶吹转炉进行吹炼,以钢水总重量为基准,当钢水中C 含量为0. 05重量%、P含量为0. 014重量%、S含量为0. 013重量%时立即出钢到钢包中。 出钢时,相对于每吨钢水,先加无烟煤2. 2千克(C含量为> 93重量% )进行增碳,出钢1/3 后,相对于每吨钢水,先在钢包中加入预脱氧剂铝铁合金(Al含量为40重量%,安阳市恒旺冶金耐材有限公司)2.千克,然后相对于每吨钢水,加入!^e-Si (Si含量为74重量%,安阳市恒旺冶金耐材有限公司)3. 0千克、Mn-Si (Mn含量为彡68%,攀枝花攀宏冶金制品有限公司)6. 7千克、Fe-Cr (Cr含量为63%,攀枝花攀宏冶金制品有限公司)16. 0千克、Fe-Mo (Mo 含量为60重量%,攀枝花攀宏冶金制品有限公司)2. 7千克,进行Si、Mn、Cr、M0元素的合金化,使所得钢水中,以钢水的总重量为基准,C含量为0. 25重量%、Si含量为0. 17重量%、 Mn含量为0. 52重量%、Cr含量为0. 93重量%、Mo含量为0. 16重量%。然后,对钢包内的钢水进行吹氩精炼,吹氩精炼的时间为8分钟,氩气吹入压力为 0. SMPa ;当钢水送到LF炉(带电加热的130吨钢包精炼炉)后,先加热化渣,然后相对于每吨钢水,加入精炼渣2.0千克和铝丸0. 15千克,加热钢水到1650°C,LF精炼共进行25 分钟,然后将LF精炼后的钢水立即送到RH真空装置(带成分微调和真空循环脱气的钢包精炼炉)进行真空处理,真空精炼的开始温度为1635°C,钢水真空处理5分钟,当真空度控制在300帕以下后,加入铝丸、碳粉、Fe-Si、Fe-Mn、Fe-Cr、Fe-M0等合金对钢水成分进行微调,使所得钢水中,以钢水的总重量为基准,C含量为0. 30重量%、Si含量为0. 22重量%、 Mn含量为0. 52重量%、Cr含量为0. 93重量%、Mo含量为0. 16重量%、A1含量为0. 02重量%、P含量为0. 015重量%、S含量为0. 014%,H含量为0. 00015重量%、Ni含量为0. 05 重量%、Cu含量为0. 04重量%、As含量为0. 006重量%、Sn含量为0. 005重量%、N含量为0. 0075重量%。RH真空精炼共进行14分钟,RH真空精炼结束后的温度为1585°C。将真空精炼后的钢水进行浇铸(大方坯连铸)得到钢坯,连铸全过程采用保护浇铸,即从钢包-中间包-结晶器的全过程均采用浸入式长水口及氩气进行保护浇铸,中间包及结晶器钢水液面添加保护渣进行浇铸,钢水平均浇铸温度为1555°C。采用推钢式加热炉加热钢坯到1300°C,然后在1270°C温度下保温2. 0小时,总加热时间为4. 1小时。然后开始轧制CNG气瓶用方坯或圆钢坯,轧后采用堆垛空冷方式进行冷却。各成分的检测方法分别为碳素钢和中低合金钢火花源原子发射光谱分析方法,国家标准为GB/T4336。氧、氮含量的检测方法为脉冲加热惰气熔融-红外线吸收法,国家标准为GB/T1U61,按照夹杂物评级标准GB/T10561评价出气瓶钢的A、B、C、D类夹杂级别,检测结果如表2所示。机械性能测试
将实施例1-4和对比例1制备的气瓶钢按标准取样,并按常规的调质工艺进行热处理后,进行机械性能测试,其中,拉伸性能按照GB/T2^金属材料室温拉伸试验方法进行,分别检测屈服强度ReL,抗拉强度Rm,伸长率Α。按照GB/T2^金属夏比缺口冲击试验方法检测冲击值。检测的结果列在表3中。表1各实施例参数表
权利要求
1.气瓶用热轧型钢,其重量百分比组分为C0.25-0.32 %、Si 0. 15-0. 35%, Mn 0. 40-0. 60 %, Cr 0. 80-1. 05 %, Mo 0. 15-0. 25 %、Al 0. 02-0. 04 P ^ 0. 015S 彡 0. 015%, P+S 彡 0. 020%, Ni 彡 0. 2%、Cu 彡 0. 15%, Sn 彡 0. 015%, As 彡 0. 015%, H 彡 0. 0002%, N ( 0. 009%, T
( 0. 0020%,余量为铁。
2.根据权利要求1所述的气瓶用热轧型钢,其特征在于其中下述成分的重量百分比组分为C 0. 29-0. 32 %、Si 0. 20-0. 30 %, Mn 0. 5-0. 7 Cr 0. 95-1. 05 %, Mo 0. 17-0. 25%、P 彡 0. 015%、S 彡 0. 010%。
3.制备气瓶用热轧型钢的方法,其特征在于包括以下步骤a、转炉吹炼;转炉吹炼时控制吹炼终点的C重量含量控制在0.05 0. 20%、P重量含量控制在P < 0. 015%、S重量含量控制在015% ;然后在出钢时进行增碳和合金化,使得在该步骤得到的钢水中,以钢水总重量计=C 0. 20-0. 26%, Si 0. 15-0. 3%, Mn 0. 45-0. 65%, Cr 0. 9-1. 05%,Mo 0. 17-0. 25% ;b、钢包精炼;在钢包精炼中加入金属铝和精炼渣,控制钢包渣碱度在2.0-3. 5之间,使钢水中的S重量含量在0.010%以下C、真空精炼;使在该步骤获得的钢水中,以钢水总重量计C 0. 25-0. 32 %, Si 0. 15-0. 35%,Mn 0. 40-0. 60%, Cr 0. 80-1. 05%,Mo 0. 15-0. 25%, Al 0. 02-0. 04% ;d、连铸;控制铸坯拉速在0.45-0. 70m/min ;e、钢坯轧制;加热温度1220-1300°C,均热温度1230_U80°C,总加热时间彡4.釙。
4.根据权利要求3所述的气瓶用热轧型钢的方法,其特征在于真空精炼步骤获得的钢水中,以钢水总重量计C 0. 29-0. 32 %、Si 0. 20-0. 30 %, Mn 0. 5-0. 7 Cr 0. 95-1. 05%, MoO. 17-0. 25%, Al 0. 02-0. 04%。
5.根据权利要求3所述的气瓶用热轧型钢的方法,其特征在于所述精炼渣为石灰加萤石,石灰与萤石的配比为5 1。
6.根据权利要求3所述的制备气瓶用热轧型钢的方法,其特征在于所述转炉吹炼步骤中,出完钢后采用0. 4-0. 9MPa的压力对钢包进行吹氩,吹氩时间为6-20min。
全文摘要
本发明属于钢铁生产领域,具体涉及一种气瓶用热轧型钢及其生产方法。本发明所要解决的技术问题是提供一种气瓶用热轧型钢,改善气瓶用热轧型钢的质量及综合力学性能。本发明气瓶用热轧型钢,其重量百分比组分为C 0.25~0.32%、Si 0.15~0.35%、Mn 0.40~0.60%、Cr 0.8~1.05%、Mo 0.15~0.25%、Al 0.02~0.04%、P≤0.015%、S≤0.015%、P+S≤0.020%、Ni≤0.2%、Cu≤0.15%、Sn≤0.015%、As≤0.015%、H≤0.0002%、N≤0.009%、T[O]≤0.0020%,余量为铁。本发明钢种只需通过简单的调质热处理后,就能获得很好的、稳定的综合机械性能。
文档编号C22C38/44GK102277534SQ201110215428
公开日2011年12月14日 申请日期2011年7月29日 优先权日2011年7月29日
发明者代华云, 杨文中, 柯晓涛, 蒲学坤, 陈小龙 申请人:攀钢集团攀枝花钢钒有限公司, 攀钢集团攀枝花钢铁研究院有限公司, 攀钢集团有限公司, 攀钢集团研究院有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1