超强高韧耐蚀Al-Zn-Mg-Cu铝合金材料及其制备方法

文档序号:3311625阅读:131来源:国知局
超强高韧耐蚀Al-Zn-Mg-Cu铝合金材料及其制备方法
【专利摘要】本发明提供一种超强高韧耐蚀Al-Zn-Mg-Cu铝合金材料及其制备方法,所述铝合金成分及重量百分比含量是:Zn:8.0~9.0wt%,Mg:1.2~2.0wt%,Cu:1.9~3.3wt%,Zr:0.05~0.20wt%,Ti:0.01~0.05wt%,Fe:0~0.05wt%,Si:0~0.05wt%,其余为Al;且Zn、Mg、Cu总体含量的重量百分比为11.0~13.2wt%,Zn与Mg的重量比为4~7.3。该合金具有高的强度,高的断裂韧性和抗腐蚀性能,可应用于航空航天、交通运输、军工等领域。
【专利说明】超强高韧耐蚀Al-Zn-Mg-Cu铝合金材料及其制备方法
【技术领域】
[0001]本发明涉及一种新型超强高韧耐蚀Al-Zn-Mg-Cu铝合金材料及其制备方法,属于有色金属【技术领域】。
【背景技术】
[0002]Al-Zn-Mg-Cu合金因具有高强度、低的密度、较好的耐腐蚀和抗疲劳性能而被广泛用于航空航天领域。作为飞机机翼的主要结构材料,现有的Al-Zn-Mg-Cu合金(例如,7150,7055,7449)能够满足当前大型机翼结构以及大的起飞重量对机翼结构材料(主要为上翼结构材料)所提出的性能要求,即能够满足飞机在飞行过程中上翼所需承受的高的压应力并具备一定程度的断裂韧性。
[0003]然而,未来具有更大尺寸的超大型以及具备超大载荷能力的喷气式飞机的发展对机翼结构材料提出了新的要求以满足其新的设计准则。对这种全新的超大型飞机来说,其机翼上翼除了要满足在飞行过程中所承受的高的压应力外,还要能够满足在降落过程中所承受的高的拉应力,这种拉应力源于更大更重的机翼和超大的机体重量使飞机在降落过程中所产生的向下的弯曲载荷。一般来说,航空铝材在拉应力长期作用的环境下应具备较好的断裂韧性,这也是飞机机翼下翼采用更高断裂韧性的2XXX合金而没有采用强度更高的7XXX合金的主要原因。当前广泛使用的Al-Zn-Mg-Cu合金虽然强度能达到超大型飞机对强度的要求,但其断裂韧性在这种全新的使用环境下还显不足,这一缺点制约着超大型飞机机翼结构的优化设计。目前,为适应新型大飞机机翼力学性能的要求,新型Al-Zn-Mg-Cu合金的开发偏向于更高的韧性以及较高的强度。
[0004]ΑΑ7085铝合金是一款专门为大飞机(如空客Α380)机翼结构而开发的新型铝合金,该合金具有很高的韧性以及较高的强度和低淬火敏感性,可直接成型制作整体式的翼梁结构,从而取代了传统意义上的分部组装式翼梁(上翼梁采用7ΧΧΧ铝合金,下翼梁采用2ΧΧΧ铝合金)。这种新型铝合金的优势在于可以使大型零件由组装式变为整体式,从而节约了大量的结构连接件、降低了零件整体重量及安装成本,但是整体成型所带来的材料利用率低以及7085合金本身并不具备较高的强度等缺点部分抵消了该合金带来的成本优势。
[0005]然而,近年来一些新型焊接技术相继投入实际应用,例如激光焊接技术以及搅拌摩擦焊技术。以这些新型焊接方式连接所生产出来的翼梁,具备了分部组装式翼梁和整体式翼梁各自的优点,即可以使用多种不同牌号及不同热处理工艺的合金进行焊接,充分发挥各自优势以减少各部件重量及原材料使用量,同时又几乎不需采用连接件,减少了零件整体的重量以及安装成本。
[0006] 在这种新型焊接技术开始广泛应用到航空工业的背景下,一种新型的7ΧΧΧ铝合金的需求相应出现,该型铝合金需要具有高的韧性、高的强度、较好的抗腐蚀性能,能够满足超大型/超大载荷大飞机对机翼(上翼)的力学性能要求,充分利用焊接技术为7ΧΧΧ铝合金的航空应用带来新动力。
【发明内容】

[0007]本发明旨在至少解决上述技术缺陷之一。
[0008]为此,本发明的第一个目的在于提出一种超强高韧耐蚀铝合金材料,其特征在于所述超强高韧耐蚀铝合金材料中各成分的重量百分比为:Zn:8.0~9.0wt%, Mg:1.2~
2.0wt%, Cu:1.9 ~3.3wt%, Zr:0.05 ~0.20wt%, Ti:0.01 ~0.05wt%, Fe:0 ~0.05wt%, Si:O~0.05wt%,其余为Al ;且Zn,Mg, Cu总体含量的重量百分比为11.0~13.2wt%,Zn与Mg的重量比为4~7.3。
[0009]本发明的第二个目的在于提出一种超强高韧耐蚀铝合金材料的制备方法,其特征在于:该方法包括下述步骤:
[0010](I)按合金成分:Zn:8.0 ~9.0wt%, Mg: 1.2 ~2.0wt%, Cu:1.9 ~3.3wt%, Zr:0.05 ~0.20wt%, Ti:0.01 ~0.05wt%,其余为 Al,进行配料,其中 Al、Zn、Mg、Cu、Zr 分别是
选取高纯铝、纯锌、纯镁、铝铜中间合金、铝锆中间合金作为原料;
[0011](2)将高纯铝完全熔化后,先后加入铝铜中间合金、铝锆中间合金、纯锌、纯镁,待所加原料充分溶解后对熔体进行搅拌;之后加入精炼剂对熔体进行精炼,消除熔体内的气体及非金属夹杂物,使熔体净化;扒渣后加入细化剂Al-T1-B,静置后进行浇注,制备出铸锭; [0012](3)对铸锭进行均匀化热处理;
[0013](4)铸锭去表皮后,进行热轧成型,获得半成品;
[0014](5)将步骤(4)获得的半成品进行固溶处理、时效热处理,获取超强高韧耐蚀铝合金材料。
[0015]优选地,所述的高纯铝为纯度大于99.99%的高纯Al、纯锌为工业纯Zn、纯镁为工业纯Mg。
[0016]优选地,所述的步骤(2)中,熔体温度控制在740~780°C,浇注温度为710~730。。。
[0017]优选地,所述的步骤(3)中,均匀化热处理为在450~475°C下的双级均匀化工艺,均匀化时间为20-60h。
[0018]优选地,所述的步骤(4)中,所述热轧成型的轧前保温及热轧温度范围同为400~450°C,保温时间为4-8h,所述热轧成型为多道次热轧。
[0019]优选地,所述的步骤(5)中,固溶处理温度范围为460~480°C,处理时间为0.5~4h,且固溶至室温水淬转移时间为5-20秒。
[0020]优选地,所述的步骤(5)中,所述半成品的时效热处理工艺为T76或T77工艺。
[0021]根据本发明的超强高韧耐蚀Al-Zn-Mg-Cu铝合金,具有高的强度,高的断裂韧性和抗腐蚀性能,可应用于航空航天、交通运输、军工等领域。
【专利附图】

【附图说明】
[0022]图1为本发明及现有技术中合金的主合金元素成分分布。图1a标明了本发明及现有技术中合金的Zn-Mg成分分布,图1b标明了本发明及现有技术中合金的Zn-Cu成分分布。[0023]其中,图1a和图1b中同时标注了当前经典的高强Al-Zn-Mg-Cu合金(7055、7056、7085、7136、7449)的成分分布以及本发明合金(Invention)的成分分布。
[0024]图2为本发明合金以及现有技术合金(7085、7081、7055、Benedictus及6、7、8号合金)的强度-韧性曲线(TYS-UPE curve)ο
【具体实施方式】
[0025]本发明中的超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分包括:Zn、Mg、Cu、Zr、T1、Al以及生产过程中带了的杂质Fe、Si,各成分的重量百分比为:Zn:8.0~9.0wt%,Mg: 1.2 ~2.0wt%,Cu: 1.9 ~3.3wt%,Zr:0.05 ~0.20wt%,T1:0.01 ~0.05wt%,Fe:0 ~0.05wt%,Si:0~0.05wt%,其余为Al ;其中,Zn、Mg、Cu总体含量的重量百分比为11.0-
13.2wt%, Zn与Mg的重量比为4~7.3。
[0026]实施例1
[0027]本实施例中超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分的重量百分比为:Zn:8.52wt%,Mg:1.47wt%,Cu:1.92wt%,Zr:0.llwt%,T1:0.02wt%,其余为 Al,以及 Fe,Si 杂质。
[0028]在后的合金编号为I。
[0029]实施例2
[0030]本实施例中超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分的重量百分比为:Zn:8.74wt%,Mg:1.50wt%,Cu:2.45wt%,Zr:0.llwt%,T1:0.02wt%,其余为 Al,以及 Fe,Si 杂质。
[0031]在后的合金编号为2。
[0032]实施例3
[0033]本实施例中超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分的重量百分比为:Zn:8.73wt%,Mg:1.41wt%,Cu:2.90wt%,Zr:0.llwt%,T1:0.03wt%,其余为 Al,以及 Fe、Si 杂质。
[0034]在后的合金编号为3。
[0035]实施例4
[0036]本实施例中超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分的重量百分比为:Zn:
8.50wt%,Mg:1.37wt%,Cu:3.24wt%,Zr:0.10wt%,T1:0.03wt%,其余为 Al,以及 Fe,Si 杂质。
[0037]在后的合金编号为4。
[0038]实施例5
[0039]本实施例中超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分的重量百分比为:Zn:
8.44wt%,Mg:1.89wt%,Cu:2.73wt%,Zr:0.10wt%,T1:0.03wt%,其余为 Al,以及 Fe,Si 杂质。
[0040]在后的合金编号为5。
[0041]实施例6
[0042]本实施例中超强高韧耐蚀Al-Zn-Mg-Cu铝合金的合金成分的重量百分比为:Zn:
8.26wt%,Mg:1.46wt%,Cu:1.96wt%,Zr:0.llwt%,T1:0.02wt%,其余为 Al,以及 Fe,Si 杂质。
[0043]在后的合金编号为9。
[0044]上述实施例中的超强高韧耐蚀Al-Zn-Mg-Cu铝合金的制备方法包括以下步骤:
[0045]步骤一、按合金成分:Zn:8.0 ~9.0wt%, Mg: 1.2 ~2.0wt%, Cu: 1.9 ~3.3wt%,Zr:0.05 ~0.20wt%, T1:0.01 ~0.05wt%,其余为 Al,进行配料,其中 Al、Zn、Mg、Cu、Zr 分
别是选取高纯铝、纯锌、纯镁、铝铜中间合金、铝锆中间合金作为原料。所述的高纯铝为纯度大于99.99%的高纯Al、纯锌为工业纯Zn、纯镁为工业纯Mg。
[0046]步骤二、将配置好的高纯铝锭装入熔炼炉中,待纯铝完全熔化后,先后加入铝铜中间合金、铝锆中间合金、纯锌、纯镁,待所加原料充分溶解后对熔体进行搅拌,取样进行化学成分分析,若所测成分与设计成分有所偏离,进一步加入相应原料进行成分调整,使之达到所需成分范围要求。加入精炼剂对熔体进行精炼,以消除熔体内的气体及非金属夹杂物,使熔体净化。扒渣后加入细化剂Al-T1-B,静置一段时间,进行浇注,制备出表面质量合格、无明显铸造缺陷的铸锭。其中,熔体温度一般控制在740~780°C,浇注温度为710~730°C。
[0047]步骤三、对铸锭进行均匀化热处理。该步骤中的均匀化热处理为在450~475°C下的双级均匀化,均匀化时间为20-60h。
[0048]步骤四、铸锭去表皮后,进行热轧成型。轧前保温及热轧温度为400~450°C,保温时间可依据轧件尺寸确定(如4-8h),随后经多道次热轧后获得半成品。
[0049]步骤五、将该半成品进行固溶处理、时效热处理,得到本发明的一种超强高韧耐蚀铝合金材料。其中的固溶处理温度范围为460~480°C,处理时间为0.5~4h,且固溶至室温水淬转移时间为5-20秒;时效热处理过程是T76或T77时效。
[0050]对比实施例1
[0051]为了对合金性能进行比对,现铸造出一批本发明的新型Al-Zn-Mg-Cu合金(合金编号为1_5)以及一批传统合金(合金编号为6-8),铸锭厚110mm。合金组成列于表1中,所有铸锭满足Fe〈0.02%, Si〈0.02%。铸锭在460°C下均匀化24h,接着升温到475°C并继续保温24h,随后空冷以模仿工业均匀化工艺。均匀化后,将铸锭去表皮取心部厚度90mm,在430°C下预热大约8h后,在430°C进行多道次热轧,最终热轧至6mm厚。对6mm厚热轧板进行475°C /Ih固溶处理和120°C /6h+160°C /4~24h过时效热处理,即将固溶处理后的热轧板在120°C进行6小时的时效热处理,再升温至160°C进行4-24小时的实效处理。
[0052]合金强度测试参照ASTM E8-2011,从6mm厚板材的中间厚度取2mm厚的Rectangular Tension (Gage Length25mm)试样,拉伸试样沿板材轧制方向(L向)。材料的韧性用Kahn撕裂实验结果来表征。Kahn撕裂测试结果能够很好的表征铝合金材料的断裂韧性。Kahn撕裂测试获得的撕裂强度和材料屈服强度的比值(TS/Rp)能够反映出材料的切口韧性,该比值是表征铝合金断裂韧性的一个良好指标。同时,Kahn撕裂测试所获得的单位面积裂纹扩展能(UPE)可反映出试样横截面上裂纹扩展所需要的能量,UPE越高,裂纹扩展越难,材料的韧性越好。在本发明中,材料的Kahn撕裂测试依据ASTM B871-01进行,测试方向是L-T向。材料的抗剥落腐蚀性能参照ASTM G34-01进行测量。
[0053]综合考虑现有高强高韧7xxx招合金及2xxx招合金的综合性能,候选合金的性能结果必须符合以下要求:屈服强度至少530MPa,抗拉强度至少560MPa,TS/Rp比值至少1.4,且UPE至少200kJ/m2,电导率E.C.>36%IACS,抗剥落腐蚀性能EB级以上。
[0054]为满足所要求的材料性能,对合金化学成分进行了仔细权衡。从本实施例结果可以发现高的(Cu+Mg)含量对合金的断裂韧性是有害的,反之,低的Cu、Mg含量会降低合金的强度水平。
[0055] 表1实施例合金的成分(wt.%)及热处理状态
[0056].
【权利要求】
1.一种超强高韧耐蚀铝合金材料,其特征在于所述超强高韧耐蚀铝合金材料中各成分的重量百分比为:Zn:8.0~9.0wt%, Mg:1.2~2.0wt%, Cu:1.9~3.3wt%, Zr:0.05~0.20wt%, Ti:0.01-0.05wt%, Fe:0~0.05wt%, S1:0~0.05wt%,其余为 Al ;且 Zn、Mg、Cu 总体含量的重量百分比为11.0~13.2wt%, Zn与Mg的重量比为4~7.3。
2.超强高韧耐蚀铝合金材料的制备方法,其特征在于,该方法包括下述步骤:
(1)按合金成分:Zn:8.0~9.0wt%,Mg: 1.2~2.0wt%, Cu:1.9~3.3wt%, Zr:0.05~0.20wt%,Ti:0.01-0.05wt%,其余为Al,进行配料,其中Al、Zn、Mg、Cu、Zr分别是选取高纯铝、纯锌、纯镁、铝铜中间合金、铝锆中间合金作为原料; (2)将高纯铝完全熔化后,先后加入铝铜中间合金、铝锆中间合金、纯锌、纯镁,待所加原料充分溶解后对熔体进行搅拌;之后加入精炼剂对熔体进行精炼,消除熔体内的气体及非金属夹杂物,使熔体净化;扒渣后加入细化剂Al-T1-B,静置后进行浇注,制备出铸锭; (3)对铸锭进行均匀化热处理; (4)铸锭去表皮后,进行热轧成型,获得半成品; (5)将步骤(4)获得的半成品进行固溶处理、时效热处理,获取超强高韧耐蚀铝合金材料。
3.根据权利要求2所述的制备适合超强高韧耐蚀铝合金材料的方法,其特征在于,所述的高纯铝为纯度大于99.99%的高纯Al、纯锌为工业纯Zn、纯镁为工业纯Mg。
4.根据权利要求2所述的制备超强高韧耐蚀铝合金材料的方法,其特征在于,所述的步骤(2)中,熔体温度控制在740-780°C,浇注温度为710-730°C。
5.根据权利要求2所述的制备超强高韧耐蚀铝合金材料的方法,其特征在于,所述的步骤(3)中,均匀化热处理为在450-475°C下的双级均匀化工艺,均匀化时间为20-60 h。
6.根据权利要求2所述的制备超强高韧耐蚀铝合金材料的方法,其特征在于,所述的步骤(4)中,所述热轧成型的轧前保温及热轧温度范围同为400-450℃,保温时间为4-8 h,所述热轧成型为多道次热轧。
7.根据权利要求2所述的制备超强高韧耐蚀铝合金材料的方法,其特征在于,所述的步骤(5)中,固溶处理温度范围为460-480°C,处理时间为0.5^4 h,且固溶至室温水淬转移时间为5-20秒。
8.根据权利要求1所述的制备超强高韧耐蚀铝合金材料的方法,其特征在于,所述的步骤(5)中,所述半成品的时效热处理工艺为T76或T77工艺。
【文档编号】C22F1/053GK103898382SQ201410119930
【公开日】2014年7月2日 申请日期:2014年3月27日 优先权日:2014年3月27日
【发明者】张济山, 舒文祥, 侯陇刚, 刘君城, 庄林忠 申请人:北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1