热冲压钢及其制备方法与流程

文档序号:11126565阅读:461来源:国知局
热冲压钢及其制备方法与制造工艺

本发明涉及一种热冲压钢和用于制备它的方法。热冲压钢可以是镀Zn的,从而其耐腐蚀性可以大幅改善。



背景技术:

钢材的伸长率通常随着强度的增加而减小。最近,由于它在高强度和可成形性两方面的优势,热冲压工艺已经应用于多种领域,在所述热冲压工艺中,通过加热至900℃或更高的温度使钢板奥氏体化,接着通过淬火用于马氏体转变。

在此类热冲压工艺中,使用特有的模具将钢板同时压紧和淬火,冷却水通过所述模具循环。特征在于固定在模具内的冷却部件,热冲压工艺能够精确控制部件的大小,并且即使在将板从模具中取出之后也不会引起回弹现象。

然而,此类热冲压钢仍然具有腐蚀问题。为了解决腐蚀问题,用Al-Si电镀热冲压钢,其防止了母材被直接暴露于腐蚀环境中。然而,如图1所示,即使破坏Zn镀层以暴露母材,Zn镀层仍然可以通过与母材的Fe进行有源电子交换来延缓母材的腐蚀。相反,当Al-Si镀层被破坏时,由于Al和Si不能与母材交换电子,经暴露的母材可能发生快速腐蚀。

因此,已经进行研究以克服镀Al-Si的热冲压钢板不足的耐腐蚀性。例如,已经提出Zn可以应用于热冲压钢板。与常规的镀Al-Si热冲压相比,镀Zn热冲压具有改善的镀层稳定性,并且可以明显改善耐腐蚀性。

然而,车辆中使用的钢板已经用Zn电镀,而热冲压钢用Al-Si电镀,因为Zn在约900℃的热冲压工艺温度下会熔化。例如,在约900℃的热冲压温度下,Zn可能会变得不稳定,从而它的实际应用被限制。纯Zn 在420℃下融化,并且在907℃下汽化,而Zn-Fe合金具有随Fe含量增加而增加的熔点。Zn-Fe的熔点随着其组成而改变,如图2所示。然而,在实际的热冲压工艺中制备的Zn-Fe合金可能不具有足够高的熔点,因为他们的Zn含量通常为90wt%或更大。因此,仅Zn-Fe合金的组分不能解决Zn熔化的问题。对于镀Zn的热冲压钢,在实际工艺中,电镀层的Zn融化,然后在淬火过程中硬化。在这个过程中,由于LEM(液体金属脆化)现象在Zn表面产生多个细小的裂纹,明显降低了耐腐蚀性和镀层稳定性。

因此,常规方法可能难以将Zn电镀应用至热冲压。尤其是,其中Zn层只是应用于热冲压钢的相关领域中的这些技术,可能具有诸如在锌镀层中产生微裂纹的问题,然而,还未提出问题的解决方案。

在背景技术部分所公开的上述信息仅用于增强对本发明的背景技术的理解,因此它可以包含在本国对本领域技术人员来说未形成已知的现有技术的信息。



技术实现要素:

因此,记住发生在相关领域的上述问题,做出本发明。在优选的方面,本发明提供一种热冲压钢,其中在热冲压工艺中可以防止Zn镀层中产生微裂纹,并且其表现出大幅改善的耐腐蚀性的微裂纹。

本发明的一个方面,提供一种钢组合物,其可以包含:约0.22wt%~约0.25wt%的碳(C)、约0.2wt%~约0.3wt%的硅(Si)、约1.2wt%~约1.4wt%的锰(Mn)、约0.02wt%~约0.05wt%的钛(Ti)、约0.11wt%~约0.2wt%的铬(Cr)、约0.005wt%~约0.01wt%的硼(B)、约0.005wt%~约0.02wt%的锌(Zr)、约0.01wt%~约0.05wt%的铌(Nb)、约0.1wt%~约0.5wt%的钨(W)、构成钢组合物余量的铁(Fe),所有的wt%均基于所述钢组合物的总量。

此外,本发明还提供可以由上述组分组成的钢组合物,或可以基本上由上述组分组成的钢组合物。例如,所述钢组合物可以由以下组分组成,或者可以基本上由以下组分组成:约0.22wt%~约0.25wt%的碳(C)、约0.2wt%~约0.3wt%的硅(Si)、约1.2wt%~约1.4wt%的锰(Mn)、 约0.02wt%~约0.05wt%的钛(Ti)、约0.11wt%~约0.2wt%的铬(Cr)、约0.005wt%~约0.01wt%的硼(B)、约0.005wt%~约0.02wt%的锌(Zr)、约0.01wt%~约0.05wt%的铌(Nb)、约0.1wt%~约0.5wt%的钨(W)、构成钢组合物余量的铁(Fe),所有的述wt%都基于钢组合物的总量。

除非另外指明,可以理解,在钢组合物中的组分的wt%均基于钢组合物的总量。

在本发明的一个方面,提供一种热冲压钢,其可以包含:含有如本文所述的钢组合物的母材;Zn镀层;通过热冲压在母材和Zn镀层之间形成的Ze-Fe合金层。

优选地,热冲压钢可以具有约1470MPa或更大的拉伸强度。

优选地,Zn-Fe合金层具有基于Zn-Fe合金层的总重量约90重量%或更大的Zn含量。

在另一方面,本发明提供一种用于制造热冲压钢的方法。该方法包括以下步骤:制备钢板,所述钢板包含约0.22wt%~约0.25wt%的碳(C)、约0.2wt%~约0.3wt%的硅(Si)、约1.2wt%~约1.4wt%的锰(Mn)、约0.02wt%~约0.05wt%的钛(Ti)、约0.11wt%~约0.2wt%的铬(Cr)、约0.005wt%~约0.01wt%的硼(B)、约0.005wt%~约0.02wt%的锌(Zr)、约0.01wt%~约0.05wt%的铌(Nb)、约0.1wt%~约0.5wt%的钨(W)、构成钢组合物余量的铁(Fe),所有的wt%均基于钢组合物的总量;用锌(Zn)电镀钢板;使所述钢板奥氏体化;在约750~850℃的温度下热冲压镀Zn钢板;和在钢板中诱导马氏体转变。

优选地,奥氏体化步骤是通过将钢板加热至约900℃或更高的温度来执行的。

该方法还包括步骤:在奥氏体化步骤和热冲压步骤之间以约600℃/分钟或更大的冷却速率将所述加热的钢板冷却至约750~850℃。

优选地,马氏体转变可通过在约3000℃/min或更大的速率下使钢板淬火实现。

本发明的其他方面将在本文中公开。

附图说明

从下面结合附图的具体实施方式中,可以更清楚地理解本发明的上述目的、特征和优点,其中:

图1示出在相关领域中Zn镀层和Al-Si镀层开裂时腐蚀生成。

图2是其中常规Zn-Fe合金的熔点作为其组成的函数绘图的图表。

图3是示出常规热冲压工艺的过程图。

图4是示出根据本发明的示例性实施方式的示例性热冲压工艺的过程图。

具体实施方式

本文所使用的术语仅为了说明具体实施方案的目的,并非旨在限制本发明。如本文所用的单数形式“一”、“一个”和“该(the)”旨在也包括复数形式,除非上下文明确说明。进一步应当理解的是,当在本说明书中使用时,术语“包含”和/或“包括”指定存在规定的特征、区域、整数、步骤、操作、元件和/或组分,但不排除存在或加入一个或多个其他特征、区域、整数、步骤、操作、元件、组分和/或其组合。

除非另有定义,本文所用的所有术语(包括技术术语和科学术语)的含义与本发明所属领域的普通技术人员通常理解的是一样的。还应当理解的是,诸如在常用字典中使用的那些术语应该被解释为具有与相关领域和本公开的语境的含义一致的含义,并且不应被理解为理想化的或过于形式化的含义,除非本文明确地这样限定。

现在将对本发明的各种示例性实施方式做出更具体地参考,其实例在附图中示出。只要可能,自始至终在附图和说明书中使用的相同的附图标号将指代相同或类似的部件。

根据其一方面,本发明提供一种钢组合物,其可以用于母材中。钢组合物可以包含约0.22wt%~约0.25wt%的碳(C)、约0.2wt%~约0.3wt%的硅(Si)、约1.2wt%~约1.4wt%的锰(Mn)、约0.02wt%~约0.05wt%的钛(Ti)、约0.11wt%~约0.2wt%的铬(Cr)、约0.005wt%~约0.01wt%的硼(B)、约0.005wt%~约0.02wt%的锌(Zr)、约0.01wt%~约0.05wt% 的铌(Nb)、约0.1wt%~约0.5wt%的钨(W)、构成钢组合物余量的铁(Fe),所有的wt%均基于钢组合物的总量。

此外,本发明还提供一种热冲压钢。所述热冲压钢可以包括含有上述钢组合物的母材、包覆在所述母材上的Zn镀层和通过热冲压在母材和Zn镀层之间形成的Ze-Fe合金层。

所述母材可以使用典型的炼钢工艺来制备。例如,所述母材可以是通过热轧、冷轧和各种热处理来制造的钢板。

如本文所引用的术语“母金属”包括基体金属,所述基体金属包括上述组合物的组分,并且这些组分可以从金属的熔化组分焊接和处理以形成合适的金属基底(例如,钢片、钢块等)。具体地,所述母金属可以充当基础基底,在其上面可以实施进一步处理,例如电镀、包覆或奥氏体化,以制备合适的热冲压钢。

Zn镀层可以在母金属的表面上形成,并且镀Zn的母金属可以经受热冲压,从而可以在母金属和Zn镀层之间形成Zn-Fe合金层。

尽管Zn镀层易受开裂的影响,其可以充当消耗电极以抑制母金属的腐蚀,从而保证母金属的高耐腐蚀性。

在完成该工艺之后,母材可以具有约1470MPa或更大的拉伸强度。具体地,在Zn镀层的底部形成的Zn-Fe合金层,即在母金属和Zn镀层之间形成的Zn-Fe合金层可以具有基于Zn-Fe合金层的总重量约90重量%的Zn含量。由于母金属组合物的组成,可以获得热冲压钢的物理特性和效果,随后将以对比下面的实施例和比较例的方式进一步描述它们。

此外,本发明还提供一种用于制造热冲压钢的方法。所述方法包括以下步骤:制备钢板,钢板包含约0.22wt%~约0.25wt%的碳(C)、约0.2wt%~约0.3wt%的硅(Si)、约1.2wt%~约1.4wt%的锰(Mn)、约0.02wt%~约0.05wt%的钛(Ti)、约0.11wt%~约0.2wt%的铬(Cr)、约0.005wt%~约0.01wt%的硼(B)、约0.005wt%~约0.02wt%的锌(Zr)、约0.01wt%~约0.05wt%的铌(Nb)、约0.1wt%~约0.5wt%的钨(W)、构成所述钢组合物的余量的铁(Fe),所有的wt%均基于钢组合物的总 量,用锌(Zn)电镀钢板,在900℃或更高的温度下使钢板奥氏体化,以约600℃/min或更大的冷却速率将加热的钢板冷却至约750~850℃,在约750~约850℃的温度下热冲压钢板,和以约3000℃/min或更大的速率淬火钢板以诱导马氏体转变。

在下文中,将描述根据本发明的钢组合物中的组分。除非另有说明,在下面的描述中所给出的wt%基于钢组合物的总重量。

如本文所用的C(碳)可以被添加以提供具有强度的钢,并且还可以影响使马氏体相的形成。当添加含量小于约0.22wt%的碳时,钢可以在强度上被劣化。当碳含量大于约0.25wt%时,硬度被过度增大从而导致相当程度的脆性。

如本文所用的Si(硅)可以作为还原剂被添加,并且可以起到强化固溶体和增加碳活性的作用。当使用约0.1wt%的硅时,它的还原效应可以忽略不计。另一方面,当硅含量大于约0.3wt%时,可淬性(形成马氏体结构的容易程度)可能劣化。

如本文所用的Mn(锰)可以被添加以通过提高可淬性保证强度。当使用小于约1.2wt%的Mn时,强度可能降低。当锰含量大于约1.4wt%时,可能发生晶界氧化,从而劣化物理特性。

如本文所用的Ti(钛)可以被添加以参与碳氮化物形成。Ti可以增加钢在高温下的稳定性,并且改善钢的强度和韧性。当使用少于约0.2wt%的Ti时,Ti对强度和韧性的影响可以忽略不计。当Ti含量大于约0.5wt%时,可能产生粗粒沉积物,并且可能降低低温抗冲击性。

如本文所用的Cr(铬)可以被添加以促进碳化物沉积物和渗碳体的形成,并且增加了高温稳定性和可淬性。Cr还可以通过微观结构细化来硬化钢。在Cr含量小于约0.11wt%时,仅可获得在可淬性方面微小的改善。当Cr含量大于约0.20wt%时,可能产生晶界氧化,从而劣化Zn镀层,随之而来的是耐腐蚀性和韧性的劣化。

如本文所用的B(硼)可以被添加以改善可淬性和强度。在B含量小于约0.005wt%时钢可以具有降低的强度,而在B含量大于约0.01wt%时在Zn镀层形成微裂纹。具体而言,当B含量小于约0.005wt%时,从 奥氏体到铁素体的相变可能不会被充分阻塞,其可以进一步劣化热冲压可加工性以及马氏体的形成,从而降低拉伸强度。

如本文所用的Zr(锆)可以被添加以形成沉积物,除去对物理特性有害的N、O和S,延长钢的保质期和降低非金属内含物的尺寸。在Zr含量小于约0.005wt%时,非金属内含物尺寸会增大,从而增加脆性和降低拉伸强度。当Zr含量大于约0.02wt%时,ZrO2可大量形成,钢的物理性能可能劣化,并且可能增加制备成本,因为Zr是一种昂贵的元素。

如本文所用的Nb(铌)可以被添加以通过碳化物形成来极大地诱发硬化,通过颗粒的微观结构细化来改善韧性,并且增加重结晶温度。当使用小于约0.01wt%的量的Nb时,它的硬化效果可忽略不计,从而拉伸强度不会被改善。当Nb含量大于约0.05wt%时,重结晶温度可过度增加以降低可淬性,随之而来的是可加工性、产量和韧性的劣化。

如本文所用的W(钨)可以被添加以增加在高温下的耐磨性和韧性以防止马氏体结构的过度生长。当W含量小于约0.1wt%时,仅可获得在拉伸强度方面微小的改善。当W含量大于约0.5wt%时,可形成过量的WC,从而由于包含在晶格中的碳的消耗而使韧性和可淬性劣化。

母钢板的制备可以是相关领域典型的炼钢工艺,而不限制到特定工艺。

电镀步骤可以用与通常在汽车中使用的钢板的镀锌方法相同的方式实施。例如,可以非限制性地使用热浸镀锌法或其他各种电镀方法。

奥氏体化的步骤可以将来自于铁素体和铁氧体的钢转化为奥氏体以使增加可加工性。例如,钢板可以被加热至约900℃或更高的温度,使得钢的所有结构都可以被转化为奥氏体相。通常,碳钢在约723~906℃的温度下转化为奥氏体。因此,900℃或更高的温度对于大部分钢结构的奥氏体转化可能是足够的。

在冷却步骤中,加热至900℃或更高温度的钢板可以在约600℃/min或更大的速率下被冷却至750~850℃的温度。例如,可以实施空气冷却或水冷却。即使在冷却至所述温度之后,由于B、Zr、Nb和W的存在,钢的结构可以保持奥氏体化。例如,当使用如本文所述含量的B时,在 TTT曲线中的突起位置可能会按顺时针方向移动。使用如本文所述含量的B、Zr、Nb和W可以延缓从奥氏体到铁氧体或珠光体的转变开始的时间,这使得在低温下进行热冲压工艺是可能的。在小于约600℃/min的冷却速率下,因为从奥氏体到铁氧体或珠光体的相变开始了无法保证足够的可加工性,。此外,要被转化为马氏体的奥氏体可能不足,导致最终产品的拉伸强度降低。

对于热冲压,根据本发明可以采用约750~850℃的温度,而常规的热冲压在约900℃的温度下进行。由于在这样的低温下可以防止Zn镀层开裂,可以保证钢板的高耐腐蚀性。在热冲压温度大于约850℃时,Zn镀层可能会开裂,从而使钢板的耐腐蚀性劣化。当热冲压在小于约750℃的温度下进行时,可能发生从奥氏体到铁氧体或珠光体的相变,从而降低拉伸强度。

在淬火步骤中,可以将钢板的温度以3000℃/min的速率快速降低至室温,以诱发从奥氏体到马氏体的转变。例如,可以使用水冷方法。实验数据显示淬火没有对Zn镀层产生明显影响。

实施例

本发明的效果将结合实施例和比较例来说明。

冲压温度、冷却速率和母钢与对比钢的组合物的数据在下表1中给出。表中的数据显示,当B、Zr、Nb和W的含量不在所描述的范围内时,母钢的拉伸强度不满足必要标准。

表1

根据热冲压温度的物理特性在下表2中给出。观察到钢板在小于约750℃的热冲压温度下具有弱拉伸强度,并且在大于约850℃的温度下出现微裂纹。

表2

在表3中,给出对比例的钢板的物理结果,其中在给出奥氏体化步 骤之后,冷却速率在标准(600℃/min)以下。观察到比较例的钢板由于微裂纹的产生具有低拉伸强度和低耐腐蚀性。

表3

表4显示其中B含量不在标准范围(0.005-0.010wt%)内的对比例。在B含量小于约0.005wt%时钢板表现出低拉伸强度,并且在B含量大于约0.010wt%时产生了微裂纹,从而表现出低耐腐蚀性。

表4

表5显示其中Cr含量不在标准范围(0.11-0.2wt%)内的对比例。 在Cr含量小于约0.11wt%时钢板表现出低拉伸强度,并且在B含量大于约0.2wt%时遭受微裂隙的产生,从而表现出低耐腐蚀性。

表5

表6显示其中Zr含量不在标准范围(0.005-0.020wt%)内的对比例。在Zr含量小于约0.005wt%或大于约0.020wt%时,钢板表现出低拉伸强度。

表6

表7显示其中Nb含量不在标准范围(0.01-0.05wt%)内的对比例。在Nb含量小于约0.01wt%或大于约0.05wt%时,钢板表现出低拉伸强度。

表7

表8显示其中W含量不在标准范围(0.1-0.5wt%)内的对比例。在W含量小于约0.1wt%或大于约0.5wt%时,钢板表现出低拉伸强度。

表8

如上所述,根据本发明的热冲压钢及其制造方法提供以下效果。

首先,尤其在耐腐蚀性方面可以获得重大改善,因为即使在镀覆层遭受微裂时,也可以防止腐蚀。

其次,可以在低温范围制造热冲压钢,从而降低制造成本。

最后,可以改善工艺条件,从而提高可加工性。

尽管出于说明性的目的,已经公开了本发明的各种示例性实施方式,本领域技术人员将领会,在不脱离所附的权利要求所公开的范围和精神的情况下,各种修改、添加和替换都是可能的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1