多角度二维超声波振动辅助纳米流体微量润滑磨削装置的制作方法

文档序号:11912361阅读:664来源:国知局
多角度二维超声波振动辅助纳米流体微量润滑磨削装置的制作方法

本发明涉及磨削加工领域,具体涉及多角度二维超声波振动辅助纳米流体微量润滑磨削装置。



背景技术:

随着科技的发展对硬脆性材料、难加工材料以及新型先进材料的需求日益增多,对关键零件的加工效率、加工质量以及加工精度提出了更高的要求,传统的磨削方法因不可避免的产生较大的磨削力以及磨削热,引起工件表面/亚表面损伤以及砂轮寿命低等一系列问题。尤其在精密与超精密加工领域,这些加工缺陷的存在严重制约着零件加工精度及加工效率的提高。因此,在磨削过程中降低磨削力和磨削热以及提高磨削质量和效率是十分必要的。

纳米流体微量润滑磨削加工继承了微量润滑磨削加工的所有优点,又解决了微量润滑磨削的换热问题,是一种绿色环保、高效低耗的磨削加工技术。基于固体换热能力大于液体,液体换热能力大于气体的强化换热理论,将一定量的纳米级固体颗粒加入到可降解的微量润滑油中生成纳米流体,通过高压空气将纳米流体进行雾化,并以射流的方式送入磨削区。高压空气主要起冷却、除屑和输送流体的作用;微量润滑油主要起润滑作用;纳米粒子增加了磨削区流体的换热能力,起到了冷却作用,同时,纳米粒子具有良好的抗磨减摩性能特性和高的承载能力,因而,进一步提高了磨削区的润滑效果,使工件表面质量和烧伤现象得到显著改善,提高了砂轮的使用寿命,改善了工作环境。

超声波振动是通过超声波发生器将220V或380V的交流电转换成功率为300W和频率为16kHz以上的超声频电振荡信号,在将电信号加到换能器上,使其产生同频率的机械振动,此振动通过调幅器将振幅放大,最终在工具端部产生足够大的机械振动幅值。超声波发生器主要由振荡器、电压放大器、功率放大器和输出变压器等部分组成。其中,振荡器是超声频发生器的核心。根据超声波加工的需要,超声波发生器的输出波形可以是正弦波或是非正弦波,但以正弦波最为多见。超声换能器是在超声频率范围内将交变的电信号转换成声信号或者将外界声场中的声信号转换为电信号的能量转换器件,常用的换能器有磁滞换能器和压电换能器。超声调幅器是超声系统的重要组成部件,它被用来将换能器传来的由电能转换成的机械能传递给被加工工件,是功率超声振幅的机械放大级,用以提高超声加工功效。在磨削加工中,工件材料塑性变形的过程,已加工表面的变形大小以及砂轮的磨损程度等,都与磨削过程中磨粒与工件接触表面相互作用的条件有关,亦即与它们所处的时间和空间条件有关。当给工艺系统加上超声波振动以后,磨粒与工件各接触表面的相互作用条件都与普通磨削有很大区别。小振幅的高频振动虽然对工件表面尺寸和形状不会有什么影响,但却使磨粒摩擦和磨损条件产生很大变化,使磨粒与工件接触表面产生附加的往复运动,从而使磨粒与工件接触表面产生周期性的分离,磨削液可以更好的进入到砂轮与工件界面的摩擦区,减小磨削力及磨削热的产生,也可以减小磨屑流出的阻力,实现高效清洁磨削区磨屑的作用。而且超声波振动促使磨粒产生断续切削作用,而冲击载荷促使工件材料更容易卷积,在切削区生成较多的微观裂纹扩展促使磨削力以及摩擦系数减小。磨削过程中材料的塑性变形主要发生在滑擦和耕犁作用阶段,由于超声波振动磨削是一种脉冲式的断续磨削,促使滑擦和耕犁比例相对减小,从而比磨削能减小,表面热损伤也显著降低。

现有技术中,超声振动磨削工具实现方式包括与数控机床或钻床的刀柄相配合的连接件,连接件用于将超声振动磨削复合加工工具和数控机床或钻床的刀柄连接,可以根据不同的刀柄制作不同的连接件,此结构可以随时拆卸做到一机多用。连接件上安装有主轴,主轴上安装有换能器,换能器与变幅杆相连,刀具安装在变幅杆上,换能器还通过碳刷与超声波发生器相连。超声波振动施加在主轴上,涉及到对机床的改造,实现起来比较困难,且对机床主轴施加超声波振动精度难以保证,对主轴的损耗也较大,还需要进一步的改进优化。

一种低温冷却与纳米粒子射流微量润滑耦合磨削介质供给系统,该系统包括至少一个微量润滑和低温冷却喷嘴组合单元,该单元设置在砂轮的砂轮罩侧面,并与工作台上的工件相配合;所述单元包括微量润滑雾化微量喷嘴和低温冷却喷嘴,微量润滑雾化微量喷嘴与纳米流体管路和压缩空气管路连接,低温冷却喷嘴与低温冷却液管路连接;每个单元的纳米流体管路、压缩空气管路和低温冷却液管路均通过控制阀与纳米流体供给系统、低温介质供给系统和压缩空气供给系统连接,纳米流体供给系统、低温介质供给系统和压缩空气供给系统与控制装置连接。该发明将低温冷却与纳米粒子射流微量润滑结合,降低了磨削热,达到了很好的冷却效果,而在磨削力方面没有实现双重的优化效果。

一种超声振动辅助磨削装置,该装置包括置于测力仪上面的圆盘形旋转台下底座和圆盘形旋转台上底座、变幅杆夹紧装置下底座和变幅杆夹紧装置上底座、连接变幅杆的超声波发生器以及工件托台,所述圆盘形旋转台下底座与圆盘形旋转台上底座之间同心定位可转动连接,所述变幅杆夹紧装置下底座和变幅杆夹紧装置上底座中间对合夹紧固定变幅杆。通过旋转台上下底座的精确旋转实现了任意方向的超声振动;同时由于采用了对合的夹紧方式方便工件托台平面调整水平;测力仪只与旋转台下底座连接,可以保证变幅杆任意角度旋转时仍能够测量砂轮三个方向的力。该发明中超声波振子通过带有圆盘的支架支撑,仅有一个支撑点,无法保证系统的稳定性,而且一维超声波振动磨削有其局限性,需要满足一定的加工参数条件,才能实现理想的加工效果。

综上所述,现有技术砂轮磨粒与工件的相对运动轨迹是一致的,长时间运转,容易对切削刃造成过度损伤,砂轮需要重新打磨,耽误工件加工周期;且长时间运转工件不易被冷却,容易造成对工件的热损伤,此外,现有技术无法实现对磨削力和磨削温度的实时的在线检测。



技术实现要素:

针对上述问题,为了解决现有技术的不足,本发明的目的是提供多角度二维超声波振动辅助纳米流体微量润滑磨削装置,该装置将可变角度的二维超声波振动技术应用于磨削加工中,通过调节两个超声波振子的角度产生不同的合振方向,以此来改变磨粒与工件的相对运动轨迹。通过测力装置和测温装置实时检测磨削力和磨削温度,同时配合纳米流体微量润滑,在砂轮与工件界面形成研磨的作用机理,进一步提高工件的加工质量,避免工件的热损伤。

本发明提供的方案是:

多角度二维超声波振动辅助纳米流体微量润滑磨削装置,包括用于夹持工件的工件夹具和用于对工件进行磨削的砂轮,工件夹具与二维超声波振动装置连接,以对砂轮切削刃锋利程度的保持包括用于夹持工件的工件夹具和用于对工件进行磨削的砂轮,工件夹具与二维超声波振动装置连接,以对砂轮切削刃锋利程度的保持;为了避免对工件的热损上,所述砂轮一侧设有用于向工件喷射纳米流体的喷射机构,二维超声波振动装置与喷射机构喷射的纳米流体对工件形成二维超声波振动与纳米流体微量润滑磨削耦合;纳米流体通过油气两相流喷嘴进行雾化喷射到磨削区,与超声波振动耦合形成研磨的作用机理;提高磨削过程中的冷却润滑性能的同时,进一步提高了工件的表面质量,有效降低磨削热。

所述二维超声波振动装置包括切向超声波振动装置和轴向超声波振动装置,切向超声波振动装置设于轴向超声波振动装置的上方或者下方,切向超声波振动装置平行于砂轮的磨削方向;

切向超声波振动装置相对于轴向超声波振动装置可旋转设置,夹角的调整范围为40°—180°,角度的可调,使磨粒与工件产生不同的相对运动轨迹,从而实现不同的磨削效果,使工件磨削表面形成更加致密的织构纹路,提高工件表面质量。

所述切向超声波振动装置设于固定板上,固定板设于工作台上,轴向超声波振动装置设于切向超声波振动装置的上方,固定板与测力仪连接,测力仪被设置为与磨削力控制系统连接。

在工件夹具上或者工件上设置温度采集元件,温度采集元件与温度控制系统连接;其中,在工件上打通孔,将温度采集元件如热电偶丝埋入孔中,并且从工件底部引出与温度控制系统连接。

所述切向超声波振动装置通过纵向剖面呈L型形状的切向支架固定于所述的固定板上,切向支架顶部支撑切向变幅杆,切向变幅杆一端与切向换能器连接,切向换能器与超声波发生器连接,另一端通过万向节与滑轨支撑座固定,滑轨支撑座支撑所述的工件夹具;万向节为球形万向节,球形万向节包含万向节球芯、万向节球壳和万向节螺帽三部分,且这三部分接触区均应涂抹凡士林油,以减小超声振动传递过程中的能量损失。

所述轴向超声波振动装置包括轴向变幅杆,轴向变幅杆一端与轴向换能器连接,另一端连接轴向支座,轴向支座通过T形滑块设于在所述的滑轨支撑座下表面或者滑轨支撑座下表面的内凹处;轴向换能器与超声波发生器连接;

在所述固定板上设置用于限制轴向超声波振动装置运动轨迹的弧形滑槽,所述轴向可调支架设置滑杆,滑槽沿着弧形滑轨移动;

进一步地,滑槽为T型滑槽,滑杆可被定位螺栓替换。

所述T形滑块的至少一侧面设置滑块滚珠,以避免滑轨支撑座与轴向支座的振动损伤;

或者,所述T型滑块底部设置千斤顶,千斤顶与T形滑块接触表面设置千斤顶滚珠,以降低T形滑块底面与千斤顶摩擦所消耗的能量,千斤顶为油压千斤顶,其包括升降套筒,升降套筒设于壳体内,壳体底部设有液压油进出口,通过外设压油装置将液压油压入油腔内。

超声波发生器主要由电压放大器、功率放大器、振荡器和输出变压器等部分组成,振荡器是其核心。超声波发生器具备信号反馈功能,能够提供频率跟踪信号和输出功率反馈信号。在电压不稳定的情况下,超声波发生器的输出功率会发生变化,导致换能器产生的机械振动不稳定。通过功率反馈信号调整功率放大器,可以输出功率稳定的信号。通过频率跟踪信号调整振荡器,使输出信号的频率能够跟踪换能器的谐振频率点。且超声波发生器具备相位检测以及相位调整功能,使两个不同方向的超声波振子分别产生具有相位差的超声波振动信号;

切向换能器与轴向换能器均为压电式换能器,利用压电式换能器的压电逆效应在电场力作用下压电陶瓷晶体内正负离子发生相对位移,导致晶体产生内应力,引起晶体发生机械形变,从而产生与超声电信号同频率的机械振动。

切向变幅杆与轴向变幅杆均用于增大换能器产生的机械振动的振幅变幅杆与换能器接触的端面设有螺纹孔,且在两者接触的端面之间涂抹凡士林油,以减小换能器与变幅杆之间的能量传递损失,其中变幅杆由大端面变为小端面处设有轴肩,使之与支架卡槽形成过盈配合,用于将切向超声波振子和轴向超声波振子分别固定在切向支架和轴向可调支架上,两变幅杆由大端面变为小端面处设有轴肩,使之与支架卡槽形成过盈配合,用于将切向超声波振子和轴向超声波振子分别固定在切向支架和轴向可调支架上。

进一步地,切向支架顶部设有轴肩卡槽,所述切向变幅杆圆周设有与轴肩卡槽配合的轴肩,使之与轴肩卡槽形成过盈配合,切向支架盖覆盖轴肩与切向支架固定;

其中,滑轨支撑座表面设有用于固定工件的工件凹槽,工件凹槽内设置可轴向位移的工件定位挡块,工件凹槽内设置可切向位移的夹具螺栓或螺钉。

在所述切向支架上切向支架与固定板固定的另一侧设有凸起,轴向可调支架通过凸起可旋转固定于切向支架,所述轴向超声波振动装置通过轴向可调支架进行支撑;

进一步地,在切向支架凸起的四周设置刻度盘,以指示轴向可调支架相对于切向支架的旋转角度;

进一步地,轴向可调支架的纵向剖面呈L型形状;

进一步地,轴向可调支架的高度低于切向支架的高度。

所述喷射机构包括喷嘴,所述砂轮部分固定于砂轮罩内,砂轮底部的一侧或两侧分别固定喷嘴,喷嘴与纳米流体输送管、压缩空气输送管分别单独连接;

进一步地,纳米流体输送管、压缩空气输送管通过磁力吸盘固定于所述砂轮罩的侧面。

本发明的有益效果是:

本发明提供的一种多角度二维超声波振动辅助纳米流体微量润滑磨削装置及其磨削力和磨削温度的测量装置,可以直接安装到精密磨床的磁力工作台上,无需对精密磨床的加工主轴进行改造,保证了机床的加工精度及超声振动能量的有效传递。通过对切向支架和轴向可调支架之间角度的精确调整,可以实现多角度的二维超声波振动。

通过对二维超声波振动角度的改变,砂轮磨粒与工件的相对运动轨迹也发生了变化,从而使得磨削力、磨削温度以及工件表面质量发生变化,具体为:首先通过调节超声波发生器控制两个方向的超声电信号的相位差,当相位差为π/2时,切向超声波振动与轴向超声波振动耦合,使砂轮磨粒与工件形成椭圆形相对运动轨迹,加以工作台的进给方向,形成仿研磨的运动轨迹,当相位差为0和π时,切向超声波振动与轴向超声波振动耦合,使砂轮磨粒与工件形成两组直线相互交叉的相对运动轨迹,加以工作台的进给方向,形成仿珩磨的运动轨迹;其次,调节切向支架和轴向可调支架,改变两个方向的超声波振动所夹的角度,从而进一步改变椭圆形运动轨迹的形状以及两组相互交叉直线的倾斜角度,使工件磨削表面形成更加致密的织构纹路,提高工件表面质量;最后,多角度二维超声波振动与纳米流体微量润滑耦合,纳米流体起到冷却润滑作用的同时,可作为磨料经由微量润滑系统输送到磨削区与二维超声波振动形成的研磨和珩磨的运动轨迹相配合,进一步提高磨削质量。

本发明的切向支架与轴向可调支架通过固定板连接到测力仪上,且在调整轴向可调支架的角度时不会影响侧力仪的位置,仍可方便准确的测量法向磨削力、切向磨削力和轴向磨削力;磨削温度测量装置采用人工热电偶测温方法,对磨削状态进行实时监控。本装置实现了磨削力和磨削温度的同时在线检测,即节省了时间,又避免了因多次装配而引起的加工误差。磨削力和磨削温度是评价磨削效果的关键因素,通过对磨削力和磨削温度的精确测量以及对实验数据的分析,为磨削加工提供指导。

附图说明

图1为多角度二维超声波振动辅助纳米流体微量润滑磨削装置轴测图;

图2为第一种、第二种、第三种实施例的第一部分多角度二维超声波振动装置轴测图;

图3为第一种、第二种、第三种实施例的俯视图;

图4为图3中A-A的旋转剖视图;

图5为第四种实施例的俯视图;

图6为第五种实施例的俯视图;

图7为第二部分纳米流体微量润滑磨削装置轴测图;

图8为第三部分磨削力、磨削温度在线测量装置轴测图;

图9为五种实施例的固定板与测力仪装夹定位示意图;

图10为五种实施例的切向支架与固定板装夹定位示意图;

图11为五种实施例的轴向可调支架与固定板装夹定位示意图;

图12为五种实施例的轴向可调支架与切向支架的装配示意图;

图13为五种实施例的切向超声波振子与切向支架装夹定位示意图;

图14为五种实施例的滑轨支撑座、滑块以及轴向支座装配结构图;

图15为图14的仰视图;

图16为工件定位夹紧装置结构示意图;

图17为五种实施例的油压千斤顶的剖视图;

图18(a)为五种实施例的超声波换能器剖视图;

图18(b)为五种实施例的超声波换能器中逆压电效应原理图;

图19为五种实施例的变幅杆结构示意图;

图20(a)为二维超声波振动砂轮磨粒与工件相对运动轨迹;

图20(b)为二维超声波振动砂轮磨粒研磨工件相对运动轨迹;

图20(c)为二维超声波振动砂轮磨粒珩磨工件相对运动轨迹;

图20(d)为一维切向超声波振动砂轮磨粒与工件相对运动轨迹;

图20(e)为一维轴向超声波振动砂轮磨粒与工件相对运动轨迹;

图21为五种实施例的超声波发生器控制图;

其中,Ⅰ-1-轴向负极铜片,Ⅰ-2-轴向换能器,Ⅰ-3-轴向变幅杆,Ⅰ-4-轴向可调支架盖螺钉,Ⅰ-5-轴向可调支架盖,Ⅰ-6-固定板,Ⅰ-7-轴向支座,Ⅰ-8-滑轨支撑座,Ⅰ-9-工件夹具,Ⅰ-10-夹具螺钉,Ⅰ-11-工件切向定位螺钉,Ⅰ-12-工件,Ⅰ-13-工件定位挡块,Ⅰ-14-工件轴向定位螺钉,Ⅰ-15-定位螺钉,Ⅰ-16-油压千斤顶壳体,Ⅰ-17-万向节球芯,Ⅰ-18-万向节螺母,Ⅰ-19-万向节球壳,Ⅰ-20-千斤顶定位螺钉,Ⅰ-21-切向支架盖,Ⅰ-22-切向支架盖螺钉,Ⅰ-23-刻度盘,Ⅰ-24-切向变幅杆,Ⅰ-25-切向换能器,Ⅰ-26-切向正极铜片,Ⅰ-27-切向负极铜片,Ⅰ-28-切向支架,Ⅰ-29-切向支架定位螺钉,Ⅰ-30-固定板定位螺钉,Ⅰ-31-轴向可调支架定位螺帽,Ⅰ-32-轴向可调支架定位螺栓,Ⅰ-33-轴向可调支架,Ⅰ-34-轴向正极铜片,Ⅰ-35-千斤顶滚珠,Ⅰ-36-T形滑块,Ⅰ-37-滑块滚珠,Ⅰ-38-T形滑槽,Ⅰ-39-轴肩卡槽,Ⅰ-40-变幅杆轴肩,Ⅰ-41-凸台螺纹孔,Ⅰ-42-切向支架凸台,Ⅰ-43-千斤顶滚珠定位螺钉,Ⅰ-44-升降套筒,Ⅰ-45-进出油口,Ⅰ-46-压电陶瓷,Ⅰ-47-压电陶瓷定位螺钉,Ⅱ-1-砂轮罩,Ⅱ-2-磁力吸盘,Ⅱ-3-砂轮,Ⅱ-4-纳米流体输送管,Ⅱ-5-压缩空气输送管,Ⅱ-6-喷嘴,Ⅱ-7-磁力工作台,Ⅲ-1-磨削力控制系统,Ⅲ-2-磨削力信息采集仪,Ⅲ-3-放大器,Ⅲ-4-测力仪,Ⅲ-5-热电偶,Ⅲ-6-磨削温度信息采集仪,Ⅲ-7-低通滤波器,Ⅲ-8-磨削温度控制系统,Ⅲ-9-超声波发生器,Ⅲ-10-负极导线,Ⅲ-11-正极导线。

具体实施方式

下面结合说明书附图具体实施例对本发明作进一步的描述:

本发明的第一种实施例如图1至4、图7至19、图20(a)至20(c)及图21所示,是关于平行于磨削方向的切向和垂直于磨削方向的轴向耦合多角度二维超声波振动辅助纳米流体微量润滑磨削装置及其磨削力、磨削温度测量装置。

如图1所示,多角度二维超声波振动辅助纳米流体微量润滑磨削装置及其磨削力、磨削温度测量装置由多角度二维超声波振动装置Ⅰ、纳米流体微量润滑磨削装置Ⅱ以及磨削力、磨削温度测量装置Ⅲ三部分构成。

如图2所示,切向支架Ⅰ-28和轴向可调支架Ⅰ-33分别通过切向支架定位螺钉Ⅰ-29和轴向可调支架定位螺栓Ⅰ-32及轴向可调支架定位螺帽Ⅰ-31定位夹紧在固定板Ⅰ-6上;切向支架凸台Ⅰ-42作为轴向可调支架Ⅰ-33的旋转中心,为了实现准确定位,轴向可调支架Ⅰ-33底部与切向支架凸台Ⅰ-42配合部分设有刻度盘Ⅰ-23;切向支架凸台Ⅰ-42上设有三个沿圆周成120°角排列的螺纹孔,通过三个千斤顶定位螺钉Ⅰ-20将油压千斤顶壳体Ⅰ-16和切向支架Ⅰ-28进行定位连接;切向变幅杆Ⅰ-24和轴向变幅杆Ⅰ-3分别通过切向支架盖Ⅰ-21和轴向可调支架盖Ⅰ-5固定在切向支架Ⅰ-28和轴向可调支架Ⅰ-33上;切向变幅杆Ⅰ-24与滑轨支撑座Ⅰ-8通过球形万向节连接,且万向节球芯Ⅰ-17与滑轨支撑座Ⅰ-8通过螺纹连接,万向节球壳Ⅰ-19与切向变幅杆Ⅰ-24通过螺纹连接,万向节球壳Ⅰ-19外层设有螺纹与万向节球芯Ⅰ-17通过万向节螺母Ⅰ-18连接;工件夹具Ⅰ-9通过三个成L形排列的夹具螺钉固定在滑轨支撑座Ⅰ-8上。

如图3和图4所示,可以更为直观的看出第一种实施例的安装方式,装夹在固定板Ⅰ-6上的切向超声波振子与轴向超声波振子的夹角成90°,为了提高整个超声波系统的稳定性,在滑块Ⅰ-36下方安装油压千斤顶,油压千斤顶通过千斤顶滚珠Ⅰ-35与T形滑块Ⅰ-36底面接触,在起到支撑作用,提高稳定性的同时,可以有效降低T形滑块底面与油压千斤顶摩擦所消耗的能量;固定板Ⅰ-6上开有滑槽Ⅰ-38,用于约束轴向可调支架Ⅰ-33的运动轨迹,轴向可调支架定位螺栓Ⅰ-32安装在滑槽中,在方便调节轴向可调支架Ⅰ-33的同时,用于将轴向可调支架Ⅰ-33固定在固定板Ⅰ-6上;T形滑块Ⅰ-36通过上顶面和两侧各设有的滑块滚珠Ⅰ-37与滑轨支撑座Ⅰ-8形成过盈配合,采用这种排布方式一方面是为最大限度的减小滑轨支撑座Ⅰ-8与T形滑块Ⅰ-36之间的摩擦,另一方面可以保证滑轨支撑座Ⅰ-8的稳定性,采用过盈配合是为了避免引起局部冲击,使T形滑块Ⅰ-36与滑轨支撑座Ⅰ-8产生冲击损伤。

如图7所示,纳米流体微量润滑磨削装置包含了砂轮罩Ⅱ-1、磁力吸盘Ⅱ-2、砂轮Ⅱ-3、纳米流体输送管Ⅱ-4、压缩空气输送管Ⅱ-5、喷嘴Ⅱ-6、磁力工作台Ⅱ-7,其中砂轮罩Ⅱ-1两侧各有一个磁力吸盘Ⅱ-2,用来固定纳米流体输送管Ⅱ-4和压缩空气输送管Ⅱ-5;纳米流体输送管Ⅱ-4和压缩空气输送管Ⅱ-5在喷嘴Ⅱ-6处汇合,使纳米流体与压缩空气在喷嘴Ⅱ-6内腔充分混合后形成气雾喷到砂轮Ⅱ-3与工件Ⅰ-12界面磨起到润滑冷却的作用。

如图8所示,测力仪Ⅲ-4通过固定板Ⅰ-6与多自由度二维超声波振动装置连接,测力仪Ⅲ-4借助磁力吸附固定在磁力工作台Ⅱ-7上;磨削力测量装置包含磨削力控制系统Ⅲ-1、磨削力信息采集仪Ⅲ-2、放大器Ⅲ-3、测力仪Ⅲ-4,当工件Ⅰ-12受到磨削力时,测量信号经放大器Ⅲ-3放大后传给磨削力信息采集仪Ⅲ-2,最后传到磨削力控制系统Ⅲ-1,并显示磨削力的大小;磨削温度测量装置包含热电偶Ⅲ-5、磨削温度信息采集仪Ⅲ-6、低通滤波器Ⅲ-7、磨削温度控制系统Ⅲ-8,测量信号经热电偶Ⅲ-5传给磨削温度信息采集仪Ⅲ-6,然后传到低通滤波器Ⅲ-7,将一些干扰信号过滤,最后传到磨削温度控制系统Ⅲ-8,并显示热电偶Ⅲ-5工作端温度即工件Ⅰ-12的温度。超声波发生器Ⅲ-9同时为切向换能器Ⅰ-25和轴向换能器Ⅰ-2提供超声频电信号,超声频电信号通过正极导线Ⅲ-11和负极导线Ⅲ-10传递给轴向正极铜片Ⅰ-34和轴向负极铜片Ⅰ-1。

如图9所示,测力仪Ⅲ-4通过四个固定板定位螺钉Ⅰ-30与固定板Ⅰ-6连接,固定板Ⅰ-6的稳固与否将直接影响整个二维超声波振动系统的稳定性,因此四个固定板定位螺钉Ⅰ-30跨度尽可能的大,而且为了不阻碍轴向可调支架Ⅰ-33的转动以及切向支架Ⅰ-28的安装,固定板定位螺钉Ⅰ-30的顶面应与固定板Ⅰ-6上底面平齐。

如图10所示,切向支架Ⅰ-28通过四个切向支架定位螺钉Ⅰ-29固定在固定板Ⅰ-6上;滑槽Ⅰ-38并没有延伸到切向支架Ⅰ-28底部,这是因为切向支架Ⅰ-28和轴向可调支架Ⅰ-33均具有一定的宽度,有一定的限位;且考虑到固定板Ⅰ-6的刚度和轴向可调支架Ⅰ-33的稳定性,滑槽Ⅰ-38并没有设计成镂空。

如图11所示,轴向可调支架Ⅰ-33通过两组轴向可调支架定位螺栓Ⅰ-32和轴向可调支架定位螺帽Ⅰ-31与固定板Ⅰ-6定位夹紧;两组轴向可调支架定位螺栓Ⅰ-32嵌在滑槽Ⅰ-38中,沿滑槽Ⅰ-38约束的轨迹运动。

如图12所示,轴向可调支架Ⅰ-33通过切向支架Ⅰ-28上的切向支架凸台Ⅰ-42与之配合;切向支架凸台Ⅰ-42上的刻线可以准确的指示轴向可调支架Ⅰ-33上刻度盘Ⅰ-23的角度,从而完成精确地角度调整,此时为第一种实施例时轴向可调支架Ⅰ-33与切向支架Ⅰ-28的位置关系,刻线的指示是90°;切向支架凸台Ⅰ-42上的三个成120°角的凸台螺纹孔Ⅰ-41,与油压千斤顶外壳Ⅰ-16上的螺纹孔配合,通过Ⅰ-20-千斤顶定位螺钉固定。

如图13所示,切向超声波振子与切向支架Ⅰ-28的装夹方式,通过切向支架盖Ⅰ-21将切向超声波振子固定在切向支架Ⅰ-28上,通过两个切向支架盖螺钉Ⅰ-22将切向支架盖Ⅰ-21与切向支架Ⅰ-28固定;同时,切向变幅杆切向支架Ⅰ-24设有轴肩Ⅰ-40与切向支架Ⅰ-28上开的轴肩卡槽配合固定;轴向超声波振子和轴向可调支架切向支架Ⅰ-33的装夹方式与切向超声波振子和切向支架Ⅰ-28的装夹方式相同。

如图14所示,支座共包含了三部分,分别为:滑轨支撑座Ⅰ-8、T形滑块Ⅰ-36和轴向支座Ⅰ-7;为了方便轴向支座Ⅰ-7的旋转通过三个成120°角的定位螺钉Ⅰ-15与他T形滑块Ⅰ-36夹紧定位;T形滑块Ⅰ-36通过滑块滚珠Ⅰ-37与滑轨支撑座Ⅰ-8接触配合;为了保证滑轨支撑座Ⅰ-8的稳定性,轴向支座Ⅰ-7与T形滑块Ⅰ-36的装夹至关重要,因此在装夹这两部分时,应确保定位螺钉Ⅰ-15拧紧。

如图15所示,从支座的仰视图可以清楚地看到滑轨支撑座Ⅰ-8、T形滑块Ⅰ-36和轴向支座Ⅰ-7这三部分装配的位置关系,其中,T形滑块Ⅰ-36两侧均有一排滑块滚珠Ⅰ-37与滑轨支撑座Ⅰ-8两个内侧面接触,减少摩擦;且T形滑块Ⅰ-36与滑轨支撑座Ⅰ-8之间有切向的位移运动,是由滑轨支撑座Ⅰ-8产生一定的振幅决定的,因此T形滑块Ⅰ-36沿切向与滑轨支撑座Ⅰ-8之间有一定的间隙,为滑轨支撑座Ⅰ-8提供位移空间。

如图16所示,滑轨支撑座Ⅰ-8上的工件夹具Ⅰ-9通过三个成L形排列的夹具螺钉Ⅰ-10定位夹紧;工件Ⅰ-12的轴向通过工件定位挡块Ⅰ-13和两个轴向定位螺钉Ⅰ-14实现定位夹紧;切向通过两个切定位螺钉Ⅰ-11实现定位夹紧;使用工件定位挡块Ⅰ-13是因为工件Ⅰ-12的大小不一,仅通过两个轴向定位螺钉Ⅰ-14难以让工件Ⅰ-12保持稳定,因此通过工件定位挡块Ⅰ-13可以让不同大小的工件Ⅰ-12实现稳定装夹。

如图17所示,油压千斤顶包含了千斤顶滚珠Ⅰ-35、油压千斤顶壳体Ⅰ-16、升将套筒Ⅰ-44;其中,千斤顶滚珠Ⅰ-35通过四个千斤顶滚珠定位螺钉Ⅰ-43固定在升将套筒Ⅰ-44顶端;升将套筒Ⅰ-44与油压千斤顶壳体Ⅰ-16内腔接触区设置密封圈,以防止液压油泄露;在油压千斤顶壳体Ⅰ-16底部设有进出油口Ⅰ-45,用外设泵油设备通过进出油口Ⅰ-45将液压油泵入油压千斤顶壳体Ⅰ-16内,由此实现升将套筒Ⅰ-44的上下移动。

如图18(a)和18(b)所示,切向换能器Ⅰ-25中设置有四个Ⅰ-46,且通过压电陶瓷定位螺钉Ⅰ-47使其与切向换能器Ⅰ-25连接固定;且四个压电陶瓷片Ⅰ-46之间交叉设有切向正极铜片Ⅰ-26和切向负极铜片Ⅰ-27;切向换能器Ⅰ-25通过压电陶瓷Ⅰ-46的压电逆效应将超声波发生器Ⅲ-9产生的超声频电信号转变成机械振动,当在压电陶瓷Ⅰ-46的晶体表面加一定数量电荷时,晶体会发生变形,这就是压电逆效应,在电场力作用下晶体内正负离子发生相对位移,导致晶体产生内应力,引起晶体发生机械形变;轴向换能器Ⅰ-2内部的装夹方式及工作原理与切向换能器Ⅰ-25相同。

如图19所示,切向变幅杆Ⅰ-25之所以能放大超声振动振幅,是由于通过它的任一截面的振动能量是不变的,因此截面小的地方,能量密度较大。而能量密度又正比于振幅A2,若截面小的地方,能量密度较大,则振幅也较大,即变幅杆截面小的地方振幅就得到了放大。轴向变幅杆Ⅰ-3的工作原理与切向变幅杆Ⅰ-25相同。

谐振长度L的计算公式为:

<mrow> <mi>L</mi> <mo>=</mo> <mfrac> <mi>&lambda;</mi> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>

式中L为谐振长度,λ超声波的波长,可通过以下公式计算:

<mrow> <mi>&lambda;</mi> <mo>=</mo> <mfrac> <mi>c</mi> <mi>f</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>

式中c为超声波在介质中的传播速度,f为超声波振动频率,考虑到经济成本和实验条件,选用45#钢作为变幅杆的材料,超声波在45#钢中传播速度c=5170m/s,频率f=20KHz,通过计算所得超声波的波长λ=258.5mm,从而得到谐振长度L=129.25mm。

计算位移节点公式:

<mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mi>&lambda;</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>

得到位移节点x0=64.625mm。

放大系数计算公式:

MP=N2 (4)

<mrow> <mi>N</mi> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mn>1</mn> </msub> <msub> <mi>S</mi> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>

式中Mp为放大系数,N为面积系数,S1、2为变幅杆输入输出端面积(mm2),图19中D1、2为变福杆输入端和输出端直径(mm)。根据所需变幅杆的放大系数,来设定输入端和输出端的直径。

如图20(a)至20(c)所示,沿着平行于磨削方向和垂直于磨削方向的二维超声波振动辅助纳米流体微量润滑磨削砂轮磨粒与工件相对运动轨迹共有两种,分别为仿研磨运动轨迹和仿珩磨运动轨迹;这两种相对运动轨迹是通过超声波发生器中的相位调整环节产生,当相位差为π/2时,切向超声波振动与轴向超声波振动耦合,使砂轮磨粒与工件形成椭圆形相对运动轨迹,加以工作台的进给方向,形成仿研磨的运动轨迹;当相位差为0和π时,切向超声波振动与轴向超声波振动耦合,使砂轮磨粒与工件形成两组直线相互交叉的相对运动轨迹,加以工作台的进给方向,形成仿珩磨的运动轨迹。

如图21所示,220V的交流电源为超声波发生器Ⅲ-9中的振荡级、功率级以及相位检测部分供电,振荡级产生超声频信号后经放大级放大,通过功率级提高超声信号的功率,然后通过阻抗匹配传递给换能器,采样信号反馈将超声波发生器Ⅲ-9的输出功率与换能器功率比较,若不相等,则将信号反馈给振荡级和功率级,来产生与换能器相等的功率;相位检测与相位调整部分可以检测控制两个方向的超声波振动的相位,以此来实现不同的相位差,从而产生不同的运动轨迹。

图5、图7至19及图21为本发明的第二种实施例,多角度二维超声波振动辅助纳米流体微量润滑磨削装置,第二种是实例中的多角度二维超声波振动装置Ⅰ、纳米流体微量润滑磨削装置Ⅱ以及磨削力、磨削温度测量装置Ⅲ均与第一种实施例相同,不同之处在于通过调整轴向可调支架Ⅰ-33使轴向超声波振子与切向超声波振子的振动方向成锐角,以此进一步改变砂轮Ⅱ-3磨粒与工件Ⅰ-12的相对运动轨迹,可以使仿研磨和仿珩磨的运动轨迹更加致密,从而达到理想的磨削效果。

图6、图7至19及图21为本发明的第三种实施例,且第三种实例中的多角度二维超声波振动装置Ⅰ、纳米流体微量润滑磨削装置Ⅱ以及磨削力、磨削温度测量装置Ⅲ均与第一种实施例相同,不同之处在于通过调整轴向可调支架Ⅰ-33使轴向超声波振子与切向超声波振子的振动方向成钝角,以此进一步改变砂轮Ⅱ-3磨粒与工件Ⅰ-12的相对运动轨迹,可以使仿研磨和仿珩磨的运动轨迹更加致密,从而达到理想的磨削效果。

图1至4、图7至19、图20(d)及图21为本发明的第四种实施例,切向超声波振动辅助纳米流体微量润滑磨削装置及其磨削力、磨削温度测量装置,与第一种实施例的多角度二维超声波振动装置Ⅰ、纳米流体微量润滑磨削装置Ⅱ以及磨削力、磨削温度测量装置Ⅲ相同,仅控制超声波发生器即可实现,通过控制超声波发生器Ⅲ-9仅输出切向超声波信号,由于滑轨支撑座Ⅰ-8通过T形滑块Ⅰ-38与轴向支座Ⅰ-7相连,因此切向超声波振子产生振幅时,滑轨支撑座Ⅰ-8可以自由沿切向振动而不被轴向支座Ⅰ-7干涉,从而产生图20(d)所示的砂轮Ⅱ-3磨粒与工件Ⅰ-12的相对运动轨迹。

图1至4、图7至19、图20(e)及图21为本发明的第五种实施例,轴向超声波振动辅助纳米流体微量润滑磨削装置及其磨削力、磨削温度测量装置,与第一种实施例的多角度二维超声波振动装置Ⅰ、纳米流体微量润滑磨削装置Ⅱ以及磨削力、磨削温度测量装置Ⅲ相同,仅控制超声波发生器即可实现,通过控制超声波发生器Ⅲ-9仅输出轴向超声波信号,轴向超声波振子带动轴向支座产生振幅传递给滑轨支撑座Ⅰ-8,由于滑轨支撑座Ⅰ-8通过球形万向节与切向超声波振子连接,因此滑轨支撑座Ⅰ-8的轴向振动不会被干涉,从而产生如图20(e)所示的砂轮Ⅱ-3磨粒与工件Ⅰ-12的相对运动轨迹。

本方案具体工作过程如下:

以第一种实施例为例,超声波发生器Ⅲ-9产生与轴向换能器Ⅰ-2和切向换能器Ⅰ-25功率相匹配的超声频电信号,经过负极导线Ⅲ-10和正极导线Ⅲ-11传递给轴向换能器Ⅰ-2或切向换能器Ⅰ-25,轴向换能器Ⅰ-2与切向换能器Ⅰ-25将超声频电信号转变为超声频的机械振动后传递给轴向变幅杆Ⅰ-2与切向变幅杆Ⅰ-25,经由变幅杆将超声频机械振动的振幅放大一定倍数后传递给轴向支座Ⅰ-7和滑轨支撑座Ⅰ-8,从而带动工件Ⅰ-12与砂轮磨粒产生相对运动轨迹,采用球形万向节和滑轨、滑块连接,因此滑轨支撑座Ⅰ-8在受到轴向和且向振动时不会产生系统内力,避免了超声波振动系统内各连接件的振动冲击损伤。通过控制如图21所示的超声波发生器Ⅲ-9中的相位调整环节,使轴向超声波振子与切向超声波振子产生不同相位差的超声波振动信号,当相位差为π/2时,切向超声波振动与轴向超声波振动耦合,使砂轮磨粒与工件形成椭圆形相对运动轨迹,加以工作台的进给方向,形成如图20(b)所示的仿研磨的运动轨迹;当相位差为0和π时,切向超声波振动与轴向超声波振动耦合,使砂轮磨粒与工件形成两组直线相互交叉的相对运动轨迹,加以工作台的进给方向,形成如图20(c)所示的仿珩磨的运动轨迹。在第二种和第三种实施例中又通过调整轴向可调支架Ⅰ-33的角度,进一步改变砂轮磨粒与工件的相对运动轨迹的形状,使得仿研磨与仿珩磨运动轨迹的纹路更加致密,从而得到理想的工件表面质量和磨削效果。

砂轮Ⅱ-3磨削工件Ⅰ-12产生的磨削力经工件夹具Ⅰ-9传递给滑轨支撑座Ⅰ-8,切向磨削力、法向磨削力和轴向磨削力分别通过三种不同的路径传递到固定板Ⅰ-6上。其中,切向磨削力经球形万向节传递给切向变幅杆Ⅰ-24,切向变幅杆Ⅰ-24与切向支架Ⅰ-28为刚性连接,于是切向支架Ⅰ-28受到切向磨削力,然后传递到固定板Ⅰ-6上;法向磨削力经T形滑块Ⅰ-36传递给千斤顶滚珠Ⅰ-35,进而传递到切向支架凸台Ⅰ-42,最后传递给固定板Ⅰ-6;轴向磨削力经T形滑块Ⅰ-36传递给轴向支座Ⅰ-7,进而传递给轴向变幅杆Ⅰ-3,轴向变幅杆Ⅰ-3与轴向可调支架Ⅰ-33为刚性连接,于是轴向可调支架Ⅰ-33受到轴向磨削力,最后传递到固定板Ⅰ-6上。三个方向的磨削力经固定板Ⅰ-6传递给测力仪Ⅲ-4,测量信号经放大器Ⅲ-3放大后传给磨削力信息采集仪Ⅲ-2,最后传到磨削力控制系统Ⅲ-1,并显示磨削力的大小。

砂轮Ⅱ-3磨削工件Ⅰ-12产生的磨削温度经热电偶Ⅲ-5传给磨削温度信息采集仪Ⅲ-6,然后传到低通滤波器Ⅲ-7,将一些干扰信号过滤,最后传到磨削温度控制系统Ⅲ-8,并显示热电偶Ⅲ-5工作端温度即工件Ⅰ-12的温度。

待超声波振动装置完成实验加工任务之后,磁力工作台Ⅱ-7消磁,测力仪Ⅲ-4及整个装备即可卸下。

多角度二维超声波振动辅助纳米流体微量润滑磨削表面创成机理:

二维磨削过程中单颗磨粒由于在工件上引入二维超声振动激励,使其在磨削区作螺旋式或是直线交错式切削,在一个振动周期内,磨粒周期性改变切削方向使得磨粒周围多个磨刃参与切削,形成一种“多刃切削”过程,有利于磨粒切削刃锋利的保持及工件表面的磨削温度的冷却,已不同于普通磨削过程中磨粒微小弧式的切削方式,其切削路径比普通磨削长,即单颗磨粒切削作用区增大,并且使得单颗磨粒各个面上的切削刃周期性地与工件材料接触并进行切削,在微观加工区内形成了时而切削,时而分离的断续加工状态,是宏观上连续,微观上呈断续状态的切削过程。二维磨削过程中,砂轮上众多磨粒所形成的螺旋式切削轨迹相互干涉,在磨削表面形成相互交织的切削轨迹,从而形成了二维超声辅助磨削独特的微分化切削效果。二维超声辅助磨削表面的创成过程已不局限于没有后续切削刃的磨粒切削痕迹,而是众多磨粒螺旋式或者直线交错式切削轨迹,一定程度上的干涉轨迹,可使单颗磨粒切削沟槽变宽,轴向超声振幅越大,磨粒切削沟槽越宽,单位时间内去除的材料体积增加,提高了材料去除率,同时增加了众多磨粒的干涉,磨粒间的未切除痕迹在宽度及高度上都有明显的减小,降低了磨削表面粗糙度,大大提高了磨削表面的质量。

在二维超声波辅助振动磨削过程中,在工件上施加平行于砂轮线速度方向(x方向)和垂直于砂轮线速度方向(y方向)的二维超声波振动,磨粒相对工件运动轨迹方程为:

x=A cos(2πft)+vt (6)

式中,A为切向超声波振动的振幅,B为轴向超声波振动的振幅,f为超声波振动频率,v工作台进给速度,为切向超声波振动与轴向超声波振动的相位差。

当工作台静止时,工作台进给速度v=0,公式(6)和公式(7)这两个方程是用参数t来表示的砂轮磨粒与工件相对运动轨迹的参数方程,把参数t消去后,就得到轨迹的直角坐标方程,公式为:

这是椭圆方程,即为砂轮磨粒与工件相对运动轨迹的直角坐标方程。椭圆的形状由切向超声波振动与轴向超声波振动的相位差决定,下面讨论几种特殊的情形:

当时,即切向超声波振动与轴向超声波振动的相位差相等,此时由公式(8)得到:

<mrow> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> <mo>=</mo> <mfrac> <mi>A</mi> <mi>B</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>

因此,砂轮磨粒与工件的相对运动轨迹是一条过原点的直线,斜率为两个振幅之比在时刻t,砂轮磨粒离开平衡位置的位移:

所以切向超声波振动与轴向超声波振动的谐振动的频率与原来的频率相等,振幅等于沿直线振动。

时,切向超声波振动与轴向超声波振动的相位相反,即砂轮磨粒在另一条直线上作同频率、同振幅的谐振动。将和时的砂轮磨粒与工件相对运动轨迹合成即为图20(c)所示的仿珩磨的运动轨迹。

当时,此时由公式(8)得到:

<mrow> <mfrac> <msup> <mi>x</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <mi>y</mi> <mn>2</mn> </msup> <msup> <mi>B</mi> <mn>2</mn> </msup> </mfrac> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>

即砂轮磨粒与工件的相对运动轨迹是以坐标轴为主轴的椭圆,砂轮磨粒沿椭圆轨迹的运动方向,如图20(a)所示。在砂轮磨粒做椭圆运动的同时,并以进给速度v沿切向做匀速直线运动得到的相对运动轨迹如图20(b)所示仿研磨的运动轨迹。

在控制超声波发生器的相位调整部分使砂轮磨粒与工件产生不同的相对运动轨迹的基础上,通过调整轴向可调支架的角度,进一步改变螺旋式和直线交错式运动轨迹的倾斜角度,与纳米流体微量润滑磨削工况配合,使砂轮磨粒在工件表面形成更加致密的织构纹路,从而得到更高的工件表面质量和磨削效果。

以上所述仅为本发明的较佳实施例而已,并不是本发明的全部实施例,不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

除说明书所述技术特征外,其余技术特征均为本领域技术人员已知技术,为了突出本发明的创新特点,上述技术特征在此不再赘述。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1