涂覆的切削工具和方法与流程

文档序号:15102946发布日期:2018-08-04 16:11阅读:287来源:国知局
本发明涉及一种包括(Ti,Si)(C,N,O)层的涂覆的切削工具。还涉及一种制造其的方法。
背景技术
:物理气相沉积(PVD)是在例如硬质金属的基材上获得耐磨涂层的公知技术。这些涂层可用作金属机械加工的切削工具,诸如刀片和钻头。开发了多种PVD工艺。一种主要的工艺是阴极电弧蒸发工艺。通常使用的PVD工艺包括电弧蒸发、磁控溅射和离子电镀。电弧蒸发工艺相比于其它PVD工艺的优点通常包括对下面的基材或层的更好的粘附性和更高的沉积速率。然而,在通过电弧蒸发工艺制成的层中,通常得到富含晶格缺陷的涂层。当从上方放大看时,涂层看起来“模糊”,而没有任何可见的单独晶粒特征。诸如点缺陷的缺陷导致涂层中的残余压应力增加。另一方面,在溅射的层中,可能会得到较低的缺陷密度、较高的结晶度以及有时候在表面上的晶面。在电弧蒸发工艺中,施加电弧电流到真空腔室内产生金属蒸气或等离子体的一个或多个金属靶上。将偏置电压施加到基材上,同时靶充当阴极表面。点燃电弧并产生小的发射区域,其中气化的阴极材料朝着基材高速离开阴极。在通常的设置中,使用待存在于涂层中的所需金属或金属组合的一个或多个靶,并且根据待被涂覆的化合物而在存在反应气体的情况下进行沉积过程。当需要金属氮化物时,通常使用氮气作为反应性气体;对于金属碳化物,则使用甲烷或乙烷;对于金属碳氮化物,则使用甲烷或乙烷与氮气一起;并且另外添加氧气用于沉积金属羧基氮化物。施加到待被涂覆的基材上的偏置电压可以以DC模式或时变模式施加。时变模式可以是脉冲模式,其中电压随时间变化,例如通过交替地使偏置电压接通和使偏置电压关闭。在沉积期间偏置脉冲周期的总时间中的“接通时间”(即施加偏置的时间)的百分比被称为“占空比”。脉冲模式中的偏置电压的频率也可以变化,且通常以kHz表示。尽管在PVD层中有很多次需要一定水平的压缩残余应力,但由于存在对与下面的层或基材的粘附性的不利影响的风险,压缩残余应力应优选不能太高。(Ti,Si)N涂层通常用于金属机械加工的切削工具领域。(Ti,Si)N是一种深入研究的材料体系。例如,Flink等人描述了Si含量是(Ti,Si)N涂层的微结构的主要限定参数。对于x≤0.1(在Ti1-xSixN中),常规涂层是柱状的并且处于NaCl固溶体状态,而对于x>0.1,生长改变为具有Si(Ti)Nx基质相(组织相)中的Ti(Si)N纳米柱的纳米复合材料生长。组织相的厚度取决于Si含量,但通常约1nm至5nm。对于(Ti,Si)N涂覆的如下切削工具存在持续的需求,其中涂层在与基材的粘附性和抗剥落性方面具有优异的性质,并且还具有优异的耐磨性,例如耐凹陷磨损性和/或耐后刀面磨损性。此外,还需要一种电弧蒸发沉积的(Ti,Si)N层,所述(Ti,Si)N层除了具有电弧蒸发沉积层的一般益处例如与基材的优良粘附性外,还具有低水平的晶格缺陷,诸如低的点缺陷密度。定义术语“占空比”是指在完整的脉冲周期(“接通时间”+“断开时间”)期间偏置电压处于“接通”(即活动的)的时间的百分比。术语“脉冲偏置频率”是指每秒完整脉冲周期的数量。术语“FWHM”是指“半峰全宽”,其是在其峰强度的一半处的X射线衍射峰的以度(2θ)表示的宽度。术语“FWQM”是指“四分之一峰全宽”,其是在其峰强度的四分之一处的X射线衍射峰的以度(2θ)表示的宽度。附图说明图1示出样品1-4的涂层的组合的X射线衍射图。图3示出样品2在(111)峰附近的X射线衍射图的放大部分。图4示出样品3在(111)峰附近的X射线衍射图的放大部分。图5示出样品4在(111)峰附近的X射线衍射图的放大部分。技术实现要素:此时已经惊奇地发现,可以提供具有更高的Si含量同时仍然保持固溶体形式并且因此不进入纳米结晶状态的(Ti,Si)NPVD层。本发明涉及一种包括基材和涂层的涂覆的切削工具,其中所述涂层包含PVD层(A),所述PVD层(A)为式Ti1-xSixCaNbOc的化合物,0.10<x≤0.30,0≤a≤0.75,0.25≤b≤1,0≤c≤0.2,a+b+c=1,其中所述PVD层(A)为NaCl结构固溶体。在式Ti1-xSixCaNbOc中,适当地,0.11≤x≤0.27、或0.12≤x≤0.25、或0.13≤x≤0.24、或0.14≤x≤0.23、或0.15≤x≤0.22、或0.16≤x≤0.22、或0.17≤x≤0.22。在式Ti1-xSixCaNbOc中,适当地,0≤a≤0.5、0.5≤b≤1、0≤c≤0.1,或者0≤a≤0.25、0.75≤b≤1、0≤c≤0.05,或者0≤a≤0.1、0.9≤b≤1、0≤c≤0.02,或者a=0、b=1、c=0、a+b+c=1。可以通过例如TEM(透射电子显微镜)分析来检测PVD层(A)的NaCl结构固溶体的存在。本发明还涉及一种在基材上制造涂层的方法,所述涂层包含通过阴极电弧蒸发沉积的PVD层(A),所述PVD层(A)为式Ti1-xSixCaNbOc的化合物,0.10<x≤0.30,0≤a≤0.75,0.25≤b≤1,0≤c≤0.2,a+b+c=1,且其中所述PVD层(A)为NaCl结构固溶体,通过施加约-40V至约-450V的脉冲偏置电压到基材上并使用小于约12%的占空比和小于约10kHz的脉冲偏置频率来沉积所述PVD层(A)。在一个实施方式中,占空比可以小于约11%。占空比可以进一步为约1.5%至约10%或约2%至约10%。在一个实施方式中,占空比可以小于约10%。占空比可以进一步为约1.5%至约8%或约2%至约6%。在“断开时间”期间,电势是适当浮动的。脉冲偏置频率可以大于约0.1kHz,或约0.1kHz至约8kHz、或约1kHz至约6kHz、或约1.5kHz至约5kHz、或约1.75kHz至约4kHz。脉冲偏置电压可以为约-40V至约-450V或约-50V至约-450V。待被使用的脉冲偏置电压的最佳范围可以根据所使用的特定PVD反应器而变化。在一个实施方式中,脉冲偏置电压可以为约-55V至约-400V、或约-60V至约-350V、或约-70V至约-325V、或约-75V至约-300V、或约-75V至约-250V、或约-100V至约-200V。在另一实施方式中,脉冲偏置电压可以为约-45V至约-400V、或约-50V至约-350V、或约-50V至约-300V,脉冲偏置电压合适地是单极的。合适地在400℃和700℃之间,或400℃和600℃之间,或450℃和550℃之间的腔室温度下沉积PVD层(A)。合适地在如US2013/0126347A1中所公开的配备有阴极组件的PVD真空腔室中并且使用提供场线从靶表面出来并进入阳极的磁场的系统沉积PVD层(A),其中阴极均设置有围绕它们放置的环形阳极。在沉积PVD层(A)期间的气体压力可以为约0.5Pa至约15Pa、或约0.5Pa至约10Pa、或约1Pa至约5Pa。基材可以选自硬质合金、金属陶瓷、陶瓷、立方氮化硼和高速钢。基材合适地成形为切削工具。切削工具可以是用于金属机械加工的切削工具刀片、钻头或实心端铣刀。本文所述的PVD层(A)的其它可行特征是指在涂覆的切削工具中限定的PVD层(A)和在方法中限定的PVD层(A)两者。当进行PVD层(A)的X射线衍射分析时,看到非常尖锐的衍射峰。这意味着高的结晶度。还适当地获得优选的(111)平面外晶体学取向。PVD层(A)在XRD衍射中的立方(111)峰的FWHM值合适地为≤0.4度(2θ)、或≤0.35度(2θ)、或≤0.3度(2θ)、或≤0.25度(2θ)、或≤0.2度(2θ)、或≤0.18度(2θ)。PVD层(A)在XRD衍射中的立方(111)峰的FWQM(四分之一峰全宽)值合适地为≤0.45度(2θ)、或≤0.4度(2θ)、或≤0.35度(2θ)、或≤0.3度(2θ)。PVD层(A)在XRD衍射中的立方(200)峰的FWHM值合适地为≤0.5度(2θ)、或≤0.45度(2θ)、或≤0.4度(2θ)、或≤0.35度(2θ)。PVD层(A)在XRD衍射中的峰高强度I(111)/I(200)的比率合适地为≥0.3、或≥0.5、或≥0.7、或≥0.8、或≥0.9、或≥1、或≥1.5、或≥2、或≥3、或≥4。本文使用的峰高强度I(111)和I(200)以及用于确定FWHM和FWQM值的(111)峰是去除了Cu-Kα2的。PVD层(A)合适地具有>-3GPa、或>-2GPa、或>-1GPa、或>-0.5GPa、>0GPa的残余应力。PVD层(A)合适地具有<4Gpa、或<3Gpa、或<2Gpa、或<1.5Gpa、或<1GPa的残余应力。PVD层(A)的残余应力通过X射线衍射测量使用如由I.C.Noyan,J.B.Cohen,ResidualStressMeasurementbyDiffractionandInterpretation(通过衍射进行的残余应力测量和解释),Springer-Verlag,纽约,1987(第117-130页)描述的公知的sin2ψ方法来评估。还可参见例如VHauk,StructuralandResidualStressanalysisbyNondestructiveMethods(通过非破坏性方法进行的结构和残余应力分析),Elsevier,阿姆斯特丹,1997。使用CuKα-辐射在(200)反射上进行测量。已经使用侧倾技术(ψ-几何),其中使用在选定的sin2ψ-范围内等距的6至11个,优选8个ψ-角。优选在90°的Φ扇区内的Φ-角的等距分布。为了确认双轴应力状态,样品应在以ψ倾斜时对于Φ=0°和90°旋转。建议研究可能存在的剪应力,并因此应测量负ψ角和正ψ角。在欧拉1/4支架的情况下,这通过对于不同的ψ-角还在Φ=180°和270°处测量样品来完成。测量应在尽可能平坦的表面上进行,优选在切削工具刀片的后刀面进行。为了计算残余应力值,将使用泊松比率ν=0.22和杨氏模量E=447GPa。使用市售软件如来自BrukerAXS的DIFFRACPlusLeptos7.8版,优选通过准Voigt-Fit函数定位(200)反射来评估数据。总的应力值计算为获得的双轴应力的平均值。PVD层(A)在其表面上合适地包含小面化晶粒。此处的“小面化”意指在晶粒上有平坦的面。PVD层(A)的小面化晶粒合适地占据PVD层(A)的表面积的>50%、或>75%、或>90%。PVD层(A)的厚度合适地为约0.5μm至约20μm、或约0.5μm至约15μm、或约0.5μm至约10μm、或约1μm至约7μm、或约2μm到约5μm。PVD层(A)适合地为电弧蒸发沉积层。PVD层(A)合适地根据本发明的方法沉积。在一个实施方式中,涂层包括最靠近基材的例如TiN、CrN或ZrN的最内部粘结层。所述粘结层的厚度可以为约0.1μm至约1μm或约0.1μm至约0.5μm。在一个实施方式中,涂层包括最靠近基材的例如TiN、CrN或ZrN的最内部粘结层。所述粘结层的厚度可以为约0.1μm至约1μm或约0.1μm至约0.5μm。最内部粘结层可以使用与用于沉积PVD层(A)不同的工艺参数来沉积,例如使用DC偏压而不是脉冲偏压来沉积,该最内部粘结层可以具有与PVD层(A)基本相同的元素组成。涂覆的切削工具的基材可以选自硬质合金、金属陶瓷、陶瓷、立方氮化硼和高速钢。涂覆的切削工具可以是用于金属机械加工的切削工具刀片、钻头或实心端铣刀。具体实施方式实施例实施例1:将(Ti,Si)N层沉积在几何结构SNMA120804的烧结硬质合金切削工具刀片坯件上。硬质合金的组成为10重量%的Co、0.4重量%的Cr,其余为WC。所述硬质合金坯件在PVD真空腔室中涂覆,该PVD真空腔室为具有先进等离子体优化器升级的OerlikonBalzerINNOVA系统。PVD真空腔室配备有6个阴极组件。每个组件都包含一个Ti-Si合金靶。阴极组件被放置在腔室中的两个层面上。这些阴极均设置有围绕它们放置的环形阳极(如US2013/0126347A1中所公开),以及提供场线从靶表面出去并进入阳极的磁场的系统(参见US2013/0126347A1)。将腔室抽真空至高真空(小于10-2Pa),并通过位于腔室内的加热器加热至350℃至500℃,在特定情况下为500℃。然后在Ar等离子体中蚀刻坯件30分钟。四种不同的沉积物是通过改变靶中Ti与Si的关系而制成的。使用的靶是Ti0.90Si0.10、Ti0.85Si0.15、Ti0.80Si0.20和Ti0.75Si0.25。腔室压力(反应压力)设定为3.5Pa的N2气体,并且将-300V的单极脉冲偏置电压(相对于腔室壁)施加到坯件组件上。脉冲偏置频率为1.9kHz,且占空比为3.8%(“接通时间”20μs,“断开时间”500μs)。在150A电流下以电弧放电模式运行阴极(每个)120分钟。沉积厚度为约3μm的层。使用EDX(能量分散光谱法)测量沉积的PVD层的实际组成,并且其分别为Ti0.91Si0.09N、Ti0.87Si0.13N、Ti0.82Si0.18N和Ti0.78Si0.22N。使用配备有2D检测器(VANTEC-500)和具有集成的平行光束蒙特尔镜的IμSX射线源(Cu-Ká,50.0kV,1.0mA)的BrukerD8Discover衍射仪对涂覆的刀片的后刀面进行X射线衍射(XRD)分析。将涂覆的切削工具刀片安装在样品夹持器中,确保样品的后刀面与样品夹持器的参考表面平行并且后刀面也处于适当的高度。在出现相关峰的2θ角附近测量来自涂覆的切削工具的衍射强度,使得包括至少35°至50°。使用PANalytical的X'PertHighScorePlus软件来进行包括背景扣除和Cu-Kα2去除的数据分析。使用准-Voigt-Fit函数进行峰分析。没有对获得的峰强度应用薄膜校正。当确定峰强度和峰宽时,(111)峰或(200)峰与不属于PVD层的任何衍射峰(例如,像WC的基材反射)的可能峰重叠通过软件(组合峰的解卷积)进行补偿。图1示出涂层样品1至4的组合的X射线衍射图(并未去除Cu-Kα2),其示出尖(111)峰。还清楚地看到在PVD层中随着Si含量的增加,(111)峰位置的变化。这表明晶格参数有变化,同时仍保留NaCl结构,即所有样品都有(Ti,Si)N固溶体。图2至4示出样品2至4在(111)峰附近的衍射图的放大部分(去除了Cu-Kα2)。计算样品的FWHM值和FWQM值。结果示于表1中。表1.SEM分析和XRD分析的结果实施例2:通过在与实施例1中相同的组成和几何结构SNMA120804的烧结硬质合金切削工具刀片坯件上沉积(Ti,Si)N而提供一组新的(Ti,Si)N涂覆的切削工具,但是此时使用稍微不同的设备。提供与实施例1中使用的相同的组成和几何结构SNMA120804的烧结硬质合金切削工具刀片坯件。通过阴极电弧蒸发在与实施例1中不同的另一制造商的真空腔室中沉积(Ti,Si)N层。真空腔室包含四个弧形法兰。所选的TiSi组成的靶安装在所有彼此相对的法兰中。所有靶都具有相同的TiSi组成。未涂覆的坯件安装在PVD腔室中经历三重旋转的销上。在改变在靶中Ti与Si的关系的情况下进行沉积。使用的靶是Ti0.90Si0.10、Ti0.85Si0.15和Ti0.80Si0.20。根据本文要求保护的方法使用脉冲偏压制造具有不同Si含量的三种涂层(样品5至7),参见表2中使用的工艺参数。首先,使用DC偏压沉积最内部薄(约0.1μm)(Ti,Si)N层。工艺参数可以参见表2。表2.N2压力偏置电压偏置类型弧电流沉积时间温度4Pa50VDC150A5分钟约500℃其次,对于样品5至7,使用脉冲偏压沉积(Ti,Si)N的主层。工艺参数可以参见表3。表3.N2压力偏置电压偏置类型脉冲频率占空比弧电流沉积时间温度10Pa50V脉冲2kHz10%150A75分钟约500℃使用在最内部DC模式沉积和以脉冲模式的主层沉积之间的中间步骤,该步骤包括继续初始DC模式沉积,但使压力从4Pa缓变到10Pa并且还使DC模式缓变到将用于主层的脉冲模式。缓变时间为10分钟。最内部(Ti,Si)N层(DC-沉积+缓变)的层厚度为约0.1μm。对于每个样品而言,主(Ti,Si)N层的层厚度为约2.5μm。然后,通过对于整个层使用具有DC偏压的工艺在坯件上沉积(Ti,Si)N层来制造另外三个具有不同Si含量的样品8至10,参见表4中使用的工艺参数。表4.N2压力偏置电压偏置类型弧电流沉积时间温度4Pa50VDC150A75分钟约500℃对于每个样品而言,(Ti,Si)N的层厚为约2.5μm。使用与前述实施例中相同的设备和程序对涂覆的刀片的后刀面进行X射线衍射(XRD)分析。确定样品的(111)峰和(200)峰的FWHM值以及I(111)/I(200)的比率。结果示于表5中。表5.来自XRD分析的结果*基于靶组成一般而言,当与样品5至7相比较时,样品8至10的(200)峰更宽,并且当增加Si含量时,示出了更多的纳晶微观结构。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1