一种采用磁悬浮工艺提高铜合金综合性能的方法与流程

文档序号:17118910发布日期:2019-03-15 23:36阅读:212来源:国知局
一种采用磁悬浮工艺提高铜合金综合性能的方法与流程

本发明属于铜合金制备领域,尤其涉及一种采用磁悬浮工艺提高铜合金综合性能的方法法。



背景技术:

铜及铜合金由于其优异的传导性、耐磨性及耐蚀性等特征,使其具有广泛的工程应用,但由于铜及其合金的传导性与强韧性、耐蚀性指标相互制约,现有铜合金材料已无法满足现代工程部件对产品强韧性、耐蚀性和传导性的同步要求。工程用铜及其合金材料的化学成分均有相应的技术标准约束,其工艺元素调整幅度有限,因此,提升铜合金材料的综合性能方法主要取决于材料成形工艺流程和方法的优化。

现有的铜合金熔炼技术主要有反射炉熔炼、普通感应炉熔炼和真空感应炉熔炼等,多采用金属模或砂型铸造成形,其合金材料内部存在气孔、夹杂、宿松、组织偏析及晶粒粗大等缺陷,严重制约了合金材料的传导性、强韧性、耐蚀性等性能的发挥,影响工程部件使用效果及寿命。



技术实现要素:

发明目的:本发明的目的是提供一种能够有效提高铜合金抗拉强度、导电性及耐腐蚀性等综合力学性能的铜合金净化方法。

技术方案:本发明采用磁悬浮工艺提高铜合金综合性能的方法,包括如下步骤:

(1)按照铜合金组分配制原料后置于真空室的水冷铜坩埚内,并使其真空度达10-5-10-2pa;

(2)在4000-7000v、1.4-3.6a条件下将原料熔融后,再在1200-1400℃温度范围内进行磁悬浮熔炼净化20-30min,然后在水冷铜坩埚中以80-120℃/s速度冷却至室温,制得净化和快冷后的铜合金。

本发明通过采用磁悬浮制备铜合金,进而能够细化合金晶粒、均匀组织,并减少其夹杂、疏松和成分偏析,进一步提高铜合金的硬度、抗拉强度、导电性等综合力学性能及耐蚀性能。

进一步说,本发明净化的铜合金可为cu-mn-al-be、cu-ag-zr-cr或cu-ni-sn-zr合金。其中,cu-mn-al-be合金的组分可为:mn51-53%、al3.0-5.0%、fe2.0-3.0%、ni1.5-3.0%、cr0.5-1.5%、zn1.5-3.0%、be0.05-0.1%及余量铜和不可避免的杂质。cu-ag-zr-cr合金的组分可为:ag2.8-3.2%、zr0.4-0.6%、cr0.1-0.3%及余量铜和不可避免的杂质。cu-ni-sn-zr合金的组分可为:ni14-16%、sn8.0-10%、mn0.5-1.5%、zr0.03-0.15%及余量铜和不可避免的杂质。

本发明通过对cu-mn-al-be、cu-ag-zr-cr及cu-ni-sn-zr合金采用磁悬浮工艺制备,进而制得的cu-mn-al-be、cu-ag-zr-cr及cu-ni-sn-zr合金不仅抗拉强度、导电性等综合力学性能提高,且耐腐蚀性能提高。其中,对于在cu-mn-al合金而言,原料中通过加入be,其具有熔体脱氧和除气的作用,能够降低mn、al等活泼金属熔炼过程中的氧化损耗、净化金属熔体,且部分be能够与ni形成金属间化合物相,在磁悬浮作用下能够弥撒分布与铜基体,对合金有明显地强化作用。对于cu-ag-zr-cr合金而言,原料中通过添加cr,进而细化晶粒、并提高合金的强度和耐磨性。对于cu-ni-sn-zr合金,原料中添加zr,进而脱氧、细化晶粒,并缓解合金中的sn偏析。

更进一步说,净化cu-mn-al-be合金时,先在4000-5000v、1.4-2.0a条件下熔融10-20min,将原料熔化,再在1300-1400℃温度范围内进行磁悬浮熔炼净化20-30min,然后在水冷铜坩埚中快速冷却至室温,制得净化和快冷后的cu-mn-al-be合金。先在6000-7000v、2.0-3.0a条件下熔融10-20min,将原料熔化,再在1200-1250℃温度范围内进行磁悬浮熔炼净化20-30min,然后在水冷铜坩埚中快速冷却至室温,制得净化和快冷后的cu-ag-zr-cr合金。净化cu-ni-sn-zr合金时,先在5000-6000v、2.5-3.6a条件下熔融10-20min,将原料熔化,再在1250-1350℃温度范围内进行磁悬浮熔炼净化20-30min,然后在水冷铜坩埚中快速冷却至室温,制得净化和快冷后的cu-ni-sn-zr合金。

有益效果:与现有技术相比,本发明的显著优点为:该方法能够有效提高铜合金的综合力学性能及耐腐蚀性能,其中,延伸率相比于传统工艺熔炼提升了25-78%,硬度提高了35-67%,抗拉强度提升了23-57%,导电率提升了30-47.5%、应力腐蚀断裂周期提升了40%。

附图说明

图1为采用现有的冶炼方法熔炼的cu-mn-al-be合金的金相图;

图2为本发明磁悬浮熔炼的cu-mn-al-be合金的金相图;

图3为采用现有的冶炼方法熔炼的cu-ag-zr-cr合金的金相图;

图4为本发明磁悬浮熔炼的cu-ag-zr-cr合金的金相图;

图5为采用现有的冶炼方法熔炼的cu-ni-sn-zr合金的金相图;

图6为本发明磁悬浮熔炼的cu-ni-sn-zr合金的金相图。

具体实施方式

下面结合附图及实施例对本发明的技术方案作进一步详细说明。

实施例1cu-mn-al-be铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-mn-al-be铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在5000v、1.7a条件下熔融17min,将原料熔化,再在1380℃温度下进行磁悬浮熔炼净化25min,然后在水冷铜坩埚中以100℃/s快速冷却至室温,制得净化和快冷后的cu-mn-al-be合金。

将该实施例1制备的铜合金进行成分检测,获得的结果如下表1所示。

表1cu-mn-al-be铜合金组分含量(%)

对比例1

采用现有的中频感应熔炼方法制备cu-mn-al-be合金,具体包括如下步骤:

(1)在镁砂炉衬的中频感应炉中加入合金原材料和氟铝酸钠;

(2)通电加热使合金材料熔化并手工搅拌至均匀;

(3)在1400℃保温、精炼20min、然后扒渣、浇注到砂模中凝固成形。

对比例2

采用现有的工频感应熔炼方法制备cu-mn-al-be合金,具体包括如下步骤:

(1)在镁砂炉衬的工频感应炉中加入合金原材料和硼砂;

(2)通电加热使合金材料熔化并手工搅拌至均匀;

(3)在1380℃保温、精炼15min、然后扒渣、浇注到砂模中凝固成形。

对比例3

采用现有的真空感应熔炼方法制备cu-mn-al-be合金,具体包括如下步骤:

(1)在镁砂炉衬的反射炉中加入合金原材料及硼砂和氟铝酸钠混合溶剂;

(2)利用天然气燃烧加热使合金材料熔化并手工搅拌至均匀;

(3)在1320℃保温、精炼25min、然后扒渣、浇注到砂模中凝固成形。

将该实施例1及对比例1-3制备的铜合金进行性能检测,获得的结果如下表2所示。对比例1至对比例3为传统工艺制备铝青铜合金,且制备的铝青铜合金组织基本相似。将上述传统工艺和实施例1制备的铜合金进行组织结构表征,获得的结果如图1及图2所示。

表2实施例1及对比例1-3制备的铜合金的性能

通过表2可知,本发明制备的cu-mn-al-be合金,延伸率、硬度、抗拉强度均优于现有冶炼方法制备的合金,且同时导电率和应力腐蚀断裂周期提升,耐腐蚀性能有效提高。并结合图1和图2可知,现有熔铸工艺制备的cu-mn-al-be合金显微组织是粗大枝状晶、存在成分不均匀和夹杂物等缺陷,而本发明制备的cu-mn-al-be合金显微组织细小均匀、基体纯净、相组织呈有序分布,合金材料的耐蚀性和强度指标有显著提升。

实施例2cu-ag-zr-cr铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-ag-zr-cr铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在6000v、2.1a条件下熔融15min,将原料熔化,再在1250℃温度范围内进行磁悬浮熔炼净化25min,然后在水冷铜坩埚中以100℃/s快速冷却至室温,制得净化和快冷后的cu-ag-zr-cr合金。

将该实施例2制备的铜合金进行成分检测,获得的结果如下表3所示。

表3cu-ag-zr-cr铜合金组分含量(%)

对比例4

采用真空感应熔炼方法制备cu-ag-zr-cr合金,具体包括如下步骤:

(1)在石墨坩埚的中频感应炉中加入合金原材料、并抽真空至5000pa;

(2)通电加热使合金材料熔化并抽真空至50pa;

(3)在1300℃保温、精炼20min、然后倾炉浇注到模具中凝固成形。

对比例5

采用真空非自耗电弧炉熔炼方法制备cu-ag-zr-cr合金,具体包括如下步骤:

(1)在水冷坩埚中中加入合金原材料、并抽真空至50pa;

(2)通电利用电极短路电弧加热使合金材料熔化并用电弧棒反复搅拌;

(3)在1300℃保温静置3min、然后断电在水冷坩埚中凝固成形。

对比例6

采用高温电阻炉熔炼方法制备cu-ag-zr-cr合金,具体包括如下步骤:

(1)在石墨坩埚中加入合金原材料并置于高温炉内、抽真空至50pa;

(2)通电加热使合金材料熔化并在1300℃保温20min;

(3)断电后随炉冷却在坩埚中成形。

将实施例2及对比例4-6制备的铜合金进行性能检测,获得的结果如下表4所示。对比例4至对比例6为传统工艺制备铝青铜合金,且制备的铝青铜合金组织基本相似。将上述传统工艺和实施例2制备的铜合金进行组织结构表征,获得的结果如图3及图4所示。

表4实施例2及对比例4-6制备的铜合金的性能

通过表4可知,本发明制备的cu-ag-zr-cr合金,延伸率、硬度、抗拉强度均优于现有冶炼方法制备的合金,且同时导电率和应力腐蚀断裂周期提升,耐腐蚀性能有效提高。并结合图3和图4可知,现有熔铸工艺制备的cu-ag-zr-cr合金显微组织粗大、晶界存在较多的夹杂物,而本发明制备的cu-ag-zr-cr合金显微组织细小均匀、基体及晶界纯净呈有序排列,合金材料的导电性和强度指标有显著提升。

实施例3cu-ni-sn-zr铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-ni-sn-zr铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在6000v、3.5a条件下熔融18min,将原料熔化,再在1320℃温度范围内进行磁悬浮熔炼净化18min,然后在水冷铜坩埚中以100℃/s快速冷却至室温,制得净化和快冷后的cu-ni-sn-zr合金。

将该实施例3制备的铜合金进行成分检测,获得的结果如下表5所示。

表5cu-ni-sn-zr铜合金组分含量(%)

对比例7

采用现有的真空感应熔炼方法制备cu-ni-sn-zr合金,具体包括如下步骤:

(1)在氧化铝坩埚的中频感应炉中加入合金原材料、并抽真空至5000pa;

(2)通电加热使合金材料熔化并抽真空至50pa;

(3)在1300℃保温、精炼20min、然后倾炉浇注到模具中凝固成形。

对比例8

采用现有的真空非自耗电弧炉熔炼熔炼方法制备cu-ni-sn-zr合金,具体包括如下步骤:

(1)在水冷坩埚中中加入合金原材料、并抽真空至50pa;

(2)通电利用电极短路电弧加热使合金材料熔化并用电弧棒反复搅拌;

(3)在1320℃保温静置3min、然后断电在水冷坩埚中凝固成形。

对比例9

采用现有的高温电阻炉熔炼方法制备cu-ni-sn-zr合金,具体包括如下步骤:

(1)在氧化铝坩埚中加入合金原材料并置于高温炉内、抽真空至50pa;

(2)通电加热使合金材料熔化并在1350℃保温20min;

(3)断电后随炉冷却在坩埚中成形。

将该实施例3及对比例7-9制备的铜合金进行性能检测,获得的结果如下表6所示。对比例7至对比例9为传统工艺制备铝青铜合金,且制备的铝青铜合金组织基本相似。将上述传统工艺和实施例3制备的铜合金进行组织结构表征,获得的结果如图5及图6所示。

表6实施例3及对比例7-9制备的铜合金的性能

通过表6可知,本发明制备的cu-ni-sn-zr合金,延伸率、硬度、抗拉强度均优于现有冶炼方法制备的合金,且同时导电率和应力腐蚀断裂周期提升,耐腐蚀性能有效提高。并结合图5和图6可知,现有熔铸工艺制备的cu-ni-sn-zr合金显微组织是粗大枝状晶、相界模糊、成分不均匀,本发明制备的cu-ni-sn-zr合金显微组织细小均匀、基体纯净、相组织呈有序分布,所以合金材料的耐蚀性和强度指标有显著提升。

实施例4cu-mn-al-be铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-mn-al-be铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在4000v、2.0a条件下熔融20min,将原料熔化,再在1300℃温度下进行磁悬浮熔炼净化30min,然后在水冷铜坩埚中以80℃/s快速冷却至室温,制得净化和快冷后的cu-mn-al-be合金。

将该实施例4制备的铜合金进行成分检测,获得的结果如下表7所示。

表7cu-mn-al-be铜合金组分含量(%)

实施例5cu-mn-al-be铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-mn-al-be铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在5000v、1.4a条件下熔融10min,将原料熔化,再在1400℃温度下进行磁悬浮熔炼净化20min,然后在水冷铜坩埚中以120℃/s快速冷却至室温,制得净化和快冷后的cu-mn-al-be合金。

将该实施例5制备的铜合金进行成分检测,获得的结果如下表8所示。

表8cu-mn-al-be铜合金组分含量(%)

实施例6cu-ag-zr-cr铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-ag-zr-cr铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在7000v、3.0a条件下熔融10min,将原料熔化,再在1200℃温度范围内进行磁悬浮熔炼净化30min,然后在水冷铜坩埚中以80℃/s快速冷却至室温,制得净化和快冷后的cu-ag-zr-cr合金。

将该实施例6制备的铜合金进行成分检测,获得的结果如下表9所示。

表9cu-ag-zr-cr铜合金组分含量(%)

实施例7cu-ag-zr-cr铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-ag-zr-cr铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在6500v、2.0a条件下熔融20min,将原料熔化,再在1250℃温度范围内进行磁悬浮熔炼净化20min,然后在水冷铜坩埚中以120℃/s快速冷却至室温,制得净化和快冷后的cu-ag-zr-cr合金。

将该实施例7制备的铜合金进行成分检测,获得的结果如下表10所示。

表10cu-ag-zr-cr铜合金组分含量(%)

实施例8cu-ni-sn-zr铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-ni-sn-zr铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在5500v、3.6a条件下熔融10min,将原料熔化,再在1350℃温度范围内进行磁悬浮熔炼净化20min,然后在水冷铜坩埚中以80℃/s快速冷却至室温,制得净化和快冷后的cu-ni-sn-zr合金。

将该实施例8制备的铜合金进行成分检测,获得的结果如下表11所示。

表11cu-ni-sn-zr铜合金组分含量(%)

实施例9cu-ni-sn-zr铜合金

采用磁悬浮工艺提高该铜合金综合性能的方法包括如下步骤:

(1)按照cu-ni-sn-zr铜合金成分配制原料,置于真空室中的水冷铜坩埚里;关闭真空室,启动真空泵并打开真空计,抽真空,使其真空度达10-5-10-2pa;

(2)先在5000v、2.5a条件下熔融20min,将原料熔化,再在1250℃温度范围内进行磁悬浮熔炼净化30min,然后在水冷铜坩埚中以120℃/s快速冷却至室温,制得净化和快冷后的cu-ni-sn-zr合金。

将该实施例9制备的铜合金进行成分检测,获得的结果如下表12所示。

表12cu-ni-sn-zr铜合金组分含量(%)

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1