一种含有石墨烯的金刚石复合片及其制备方法与流程

文档序号:18740165发布日期:2019-09-21 01:40阅读:862来源:国知局
一种含有石墨烯的金刚石复合片及其制备方法与流程

本发明属于超硬材料技术领域,特别涉及一种应用于石油钻井、地质勘探、煤田钻采钻头上和机械加工工具等行业的含有石墨烯的金刚石复合片。



背景技术:

金刚石复合片钻头(PDC钻头)在石油、天然气钻探方面有着广泛的应用,随着常规石油、天然气开采资源的逐渐减少,大力发展页岩油、页岩气是未来的大趋势,页岩油、页岩气等难开采的地质对PDC钻头的性能要求越来越高。

金刚石复合片是将金刚石微粉和硬质合金基体(碳化钨-钴)在高温高压下烧结在一起,金刚石微粉烧结成聚晶层,具有金刚石的超高硬度和耐磨性,硬质合金基体具有可焊接性,便于应用于各种不同的工作环境。

硬质合金基体中的钴在高温高压下从基体中渗出,穿过金刚石微粉,金刚石晶粒互相接触部位融入钴液中,温度降低后,融入钴液的碳原子重新生长成为金刚石结构,从而使得金刚石晶粒之间牢固结合,成为金刚石聚晶。

金刚石复合片非常重要的性能参数是耐磨性和耐冲击性,这两项参数指标都与金刚石晶粒之间的结合强度有非常大的关系。金刚石晶粒之间的接触面积越大,金刚石晶粒结合越牢固。

在金刚石微粉高温高压下烧结在一起的过程中,目前的工艺只有金刚石晶粒接触的地方才会生长烧结在一起,形成D-D键(金刚石-金刚石键)。通过电镜观察可以发现,这些金刚石晶粒间还有大量未生长在一起的地方,想进一步提升金刚石复合片的耐磨性和耐冲击性,就需要进一步加强金刚石晶粒间的连接。但是传统的方法已经很难再进一步提高金刚石晶粒之间的连接强度。



技术实现要素:

本发明提供一种全新的配方和工艺,克服传统金刚石复合片的连接强度很难进一步提高的问题,能使金刚石复合片聚晶层中金刚石晶粒之间的连接更加牢固,进一步提高金刚石复合片的耐磨性和耐冲击性。

上述的技术问题通过以下的技术方案实现:

一种含有石墨烯的金刚石复合片,包括聚晶层和硬质合金层,聚晶层烧结在硬质合金层上,硬质合金层是由碳化钨和钴烧结而成的,其中钴的含量占硬质合金总质量的3~30%;聚晶层是由金刚石、石墨烯和钴在压力≥5.5GP、温度≥1400℃的条件下烧结在一起构成的,金刚石之间由D-D键连接,金刚石和石墨烯之间由D-C键连接,按质量计,金刚石:石墨烯:钴=100:0.5~10:3~10。

作为优选,所述的聚晶层和硬质合金层的厚度分别为2mm和11mm。

一种制备上述含有石墨烯的金刚石复合片的方法,包括以下步骤:

1)将尺寸≥10μm,厚度0.5~10nm的石墨烯粉末和晶粒粒度≤50μm的金刚石微粉充分混合均匀以后,装入到耐高温、耐高压的金属圆杯中,在混合的微粉上层放置圆片状的碳化钨硬质合金或者碳化钨-钴混合粉末,并将整体压实成型;

2)将压实成型的石墨烯粉末、金刚石微粉和碳化钨硬质合金或者碳化钨-钴混合粉末连同所述的金属圆杯一起放入碳加热管中,将碳加热管放入叶腊石块中,将叶腊石块放入高温高压设备中,升压至5.5GPa以上,升温至1400℃以上并保持压力和温度300~1000秒;

3)停止加热,降低压力,设备温度达到室温,压力降到标准大气压;从高温高压设备中取出叶腊石块,去除烧结体外部的叶腊石块、碳加热管和金属圆杯,得到含有石墨烯的金刚石复合片。

在步骤1)中,所述的石墨烯与金刚石的质量比优选1:9~1:199;所述的硬质合金基体或者碳化钨-钴粉末中优选钴的质量占10%~20%;所述的石墨烯的尺寸优选30~100μm,厚度优选0.5~5nm;所述的金刚石的粒度优选15~25μm。

在步骤1)中,所述的金属圆杯优选锆杯、钼杯或铌杯。

在步骤2)中,优选升压至压力大于6.5GPa,升温至1450℃~1600℃;保持压力和温度450~650秒。

有益效果:

1、通过在金刚石复合片的聚晶层中加入高强度的石墨烯,使得在烧结过程中石墨烯的碳原子和金刚石的碳原子连接在一起,金刚石与金刚石之间的结合强度得到提升,从而提高了金刚石复合片的耐磨性;

2、同时石墨烯具有高韧性,在金刚石晶粒之间的石墨烯能够很好地增加金刚石复合片的韧性,从而提高金刚石复合片的耐冲击性。

附图说明:

图1为未加入石墨烯的产品电镜照片,空隙较多

图2为实例1的电镜照片,空隙减少

图3为实列2的电镜照片,空隙进一步减少

具体实施方式

实施例1

将0.1g石墨烯粉末(尺寸≥50μm,厚度3~5nm)和1.9g的金刚石微粉(粒度8-15μm)混合,加入无水乙醇混合15分钟,放入80℃烘箱烘干。然后将混合均匀的粉末投入Φ16.50×10mm的锆杯中,压实粉末,放入钴含量为15%(质量比)的硬质合金圆柱Φ16.45×12mm。将金属杯放入碳加热管中,并放入叶腊石块中,然后将其放入高温高压设备中。压力从大气压逐步增加到7GPa,加热温度上升到1500℃,持续500秒。停止加热,降低压力到大气压,温度降到室温。去除烧结体外部的叶腊石块、碳加热管和金属圆杯,通过机械加工得到含有石墨烯的金刚石复合片Φ16×13mm,聚晶层厚度为2mm,硬质合金基体厚度为11mm。金刚石聚晶层与硬质合金烧结牢固,无裂纹、未分层,金刚石表面密实,无气孔、无掉边、无裂纹。制得的样品的电镜照片如图2所示,由传统工艺制备的不含石墨烯的金刚石复合片的电镜照片如图1所示,通过对比可以发现,本实施例制备的样品中,金刚石晶粒之间的空隙明显减少,这使得本实施例例制备的样品耐磨性大大提高。

样品与陶瓷结合剂碳化硅砂轮磨削,其平均磨耗比为38×104,未加入石墨烯的相同配方和相同工艺生产的金刚石复合片的平均磨耗比为30×104,可以看出加入石墨烯能提升金刚石与金刚石之间的结合强度,从而增强复合片的耐磨性。使用硬度HRC50~60的冲击钢块冲击样品金刚石聚晶层,冲击角度20°,冲击能量25焦耳,冲击40次,表层脱落小于30%的平均存活率为60%。未加入石墨烯的相同配方和相同工艺生产的金刚石复合片的耐冲击性平均存活率为45%,石墨烯的高韧性结构能够提升金刚石复合片的韧性,从而增强复合片的耐冲击性。

实施例2

将0.1g石墨烯粉末(尺寸≥50μm,厚度3-5nm)和1.9g的金刚石微粉(粒度8-15μm)混合,加入无水乙醇混合15分钟,放入80℃烘箱烘干。然后将混合均匀的粉末投入Φ16.50×10mm的锆杯中,压实粉末,放入钴含量为15%(质量比)的硬质合金圆柱Φ16.45×12mm。将金属杯放入碳加热管中,并放入叶腊石块中,然后将其放入高温高压设备中。压力从大气压逐步增加到7GPa,加热温度上升到1500℃,持续800秒。停止加热,降低压力到大气压,温度降到室温。去除烧结体外部的叶腊石块、碳加热管和金属圆杯,通过机械加工得到含有石墨烯的金刚石复合片Φ16×13mm,聚晶层厚度为2mm,硬质合金基体厚度为11mm。金刚石聚晶层与硬质合金烧结牢固,无裂纹、未分层,金刚石表面密实,无气孔、无掉边、无裂纹。制得的样品的电镜照片如图3所示,从照片中可以看出本实施例制备的样品中,金刚石晶粒之间的空隙进一步减少。

样品比实施例1的加热持续时间多了300秒,从而更多的石墨烯转变为金刚石结构,进一步增强了样品的耐磨性。样品与陶瓷结合剂碳化硅砂轮磨削,其平均磨耗比为40×104。使用硬度HRC50~60的冲击钢块冲击样品金刚石聚晶层,冲击角度20°,冲击能量25焦耳,冲击40次,表层脱落小于30%的平均存活率为55%。比常规金刚石复合片耐冲击性能好,但是比实例1中的样品耐冲击性有所下降,这是因为更多的石墨烯结构转变为金刚石结构增强了样品的耐磨性,所以样品的耐冲击性能的提升有所减弱。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1