无方向性电磁钢板及其制造方法与流程

文档序号:26004051发布日期:2021-07-23 21:21阅读:86来源:国知局
无方向性电磁钢板及其制造方法与流程

本发明涉及无方向性电磁钢板及其制造方法,具体而言,涉及高频域时的铁损低的无方向性电磁钢板及其制造方法。



背景技术:

近年来,从全球变暖等对环境的考虑出发,要求削减co2排出量及节能化,在汽车领域,进行了并用发动机和电机的混合动力电动汽车(hev)、仅由电动电机驱动的电动汽车(ev)及燃料电池车(fcev)等的开发。对于上述hev、ev及fcev等中使用的电机而言,通常为了实现电机效率的高效率化而在有利于高速旋转的高频域中驱动。针对上述电机的铁芯材料,大多使用无方向性电磁钢板,为了实现电机的高效率化,迫切要求上述钢板在高频域的低铁损化。

以往,对于无方向性电磁钢板而言,主要通过添加si、al等合金元素来增大固有电阻或减薄板厚以减少涡电流损失来实现低铁损化。但是,对于合金元素的大量添加而言,即使能够实现低铁损化,也会导致饱和磁通密度降低。磁通密度降低会使电机的铜损增加,因此导致电机效率下降。另外,减小板厚需要减薄热轧钢板的板厚或提高冷轧压下率,因此还存在导致生产率下降的问题。因而,认为若能够开发不使磁通密度降低或导致生产率下降的高磁通密度-高频低铁损的无方向性电磁钢板,则大有助于电气设备的高效率化。

作为获得于高频域铁损低的无方向性电磁钢板的技术,例如专利文献1中公开了通过添加cr来增大钢的固有电阻并实现高频域时的低铁损的方法。

现有技术文献

专利文献

专利文献1:日本特开平11-343544号公报



技术实现要素:

发明要解决的课题

但是,cr是会使饱和磁通密度降低的元素,因此,在专利文献1公开的技术中,无法兼顾高磁通密度和高频低铁损,无法充分满足近来对于无方向性电磁钢板的要求。

本发明是鉴于现有技术所存在的上述问题提出的,其目的在于提供不会导致磁通密度降低、生产率下降的高磁通密度-高频低铁损的无方向性电磁钢板,并提供其有利的制造方法。

用于解决课题的手段

本申请的发明人为了解决上述课题,着眼于表面状态对无方向性电磁钢板磁特性的影响反复进行深入研究。其结果发现,在将钢中包含的zn含量控制为规定范围的基础上,通过将最终退火后的钢板表层的钢中氮量和总厚的钢中氮量控制为规定的范围,能够减少铁损而避免磁通密度降低,从而提出了本发明。

基于上述见解,本发明为无方向性电磁钢板,其具有下述成分组成,该成分组成含有c:0.0050质量%以下、si:2.8~6.5质量%、mn:0.05~2.0质量%、p:0.10质量%以下、s:0.0050质量%以下、al:0.3~2.0质量%、n:0.0050质量%以下、zn:0.0005~0.0050质量%、ti:0.0030质量%以下、nb:0.0030质量%以下及o:0.0050质量%以下,余量为fe及不可避免的杂质,上述无方向性电磁钢板的特征在于,在将钢板的板厚设为t(mm)、将在从钢板的单侧表面到板厚1/20为止的层中作为aln存在的氮的浓度设为n1(质量%)、将总板厚中作为aln存在的氮的浓度设为n2(质量%)时,上述t、n1及n2满足下述式(1):

(t×n2)/{(t/10)×n1}≥5.0(1)。

本发明的无方向性电磁钢板的特征在于,在上述成分组成的基础上,还含有从sn:0.005~0.20质量%及sb:0.005~0.20质量%中选择的1种或2种。

本发明的无方向性电磁钢板的特征在于,在上述成分组成的基础上,还含有下述组a及组b中的至少1组的成分。

组a:合计为0.0005~0.020质量%的选自ca、mg及rem中的1种或2种以上,

组b:合计为0.01~1.0质量%的选自cu、ni及cr中的1种或2种以上

另外,本发明的无方向性电磁钢板的特征在于,板厚为0.30mm以下。

另外,本发明提出一种无方向性电磁钢板的制造方法,其中,对具有上述任一项中记载的成分组成的钢坯进行热轧、热轧板退火,并在进行1次冷轧或进行夹着中间退火的2次以上的冷轧而形成为最终板厚后,实施最终退火,上述制造方法的特征在于,将上述热轧板退火时的加热区及均热区的露点控制在0~70℃的范围内,并且,将上述最终退火时的气氛设为从氮、氢及稀有气体中选择的1种气体或2种以上的混合气体,且将所述气氛的含氮量设为30体积%以下、将露点设为-20℃以下。

本发明的无方向性电磁钢板的制造方法的特征在于,使上述最终板厚为0.30mm以下。

发明的效果

根据本发明,能够在避免磁通密度降低的情况下实现高频域时的铁损减少,因此能够优选用作混合动力电动汽车、电动汽车、高速发电机、空调压缩机、吸尘器、工作机械等的电机铁芯用材料。

附图说明

图1是示出zn含量对高频铁损的影响的曲线图。

图2是示出表层中作为aln存在的氮的量相对全厚中作为aln存在的氮的量的比值对高频铁损的影响的曲线图。

图3是示出热轧板退火时的露点对高频铁损的影响的曲线图。

图4是示出最终退火时的氮分压对高频铁损的影响的曲线图。

具体实施方式

首先,说明作为开发本发明的契机的实验。

<实验1>

在将具有下述成分组成的钢在真空炉中熔炼、铸造以制成钢锭后,进行热轧以制成板厚为2.0mm的热轧板,进行950℃×30秒(sec)(加热区、均热区的露点:55℃)的热轧板退火,在酸洗后,进行冷轧以制成最终板厚为0.25mm的冷轧板,在以体积%(vol%)比计为h2:n2=30:70、露点为-55℃的气氛下实施1025℃×10秒的最终退火,其中,前述钢含有c:0.0025质量%、si:3.3质量%、mn:0.6质量%、p:0.01质量%、s:0.0022质量%、al:0.9质量%、n:0.0019质量%、ti:0.0011质量%、nb:0.0009质量%及o:0.0024质量%,且以在0.0001~0.01质量%的范围内进行多种变化的方式含有zn,余量为fe及不可避免的杂质。

从按照上述方式制得的最终退火板的轧制方向(l方向)及宽度方向(c方向)切出宽度30mm×长度180mm的试验片,通过爱普斯坦试验测定(l+c)方向的高频铁损w10/400。图1示出上述测定的结果,在zn为0.0005~0.0050质量%的范围内确认到铁损降低。

为了调查该zn的微量添加导致铁损降低的原因,在使用sem(扫描型电子显微镜)观察最终退火后的钢板的轧制方向剖面时,对于确认到铁损增加的钢板,在钢板表层、具体而言为从钢板的单侧表面到板厚1/20为止的深度的层中确认到微细的aln的析出,推定为因该微细的氮化物使得铁损增加。

就此,针对该最终退火板,通过电解提取来分析从钢板的单侧表面到板厚1/20为止的层中作为aln存在的n的浓度n1(质量%)及钢板总厚中作为aln存在的n的浓度n2(质量%)。其结果,可知以下述式(1)表示的、钢板总厚中形成aln的氮的量相对从钢板的单侧表面到板厚1/20为止的层(表层)中形成aln的氮的量之比与铁损特性强相关:

(t×n2)/{(t/10)×n1}≥5.0(1)。

图2示出总板厚中形成aln的氮的量相对上述表层中形成aln的氮的量之比(上述式(1)的左边)与铁损w10/400之间的关系,可知上述比值为5.0以上时,使铁损大大降低,另外,上述比值为5.0以上的钢板的zn含量均在0.0005~0.0050质量%的范围内。

根据上述实验结果可知,作为在微量添加有zn的钢板中确认到铁损降低的原因,认为是在最终退火时,在钢板表层形成锌的氧化被膜、抑制了氮向钢板中侵入(氮化)。

<实验2>

接下来,调查热轧板退火时的露点对磁特性的影响。

将下述钢在真空炉中熔炼、铸造以制成钢锭后,进行热轧以制成板厚为1.8mm的热轧板,实施900℃×30秒的热轧板退火。其中,前述钢的成分组成含有c:0.0021质量%、si:3.7质量%、mn:0.4质量%、p:0.01质量%、s:0.0016质量%、al:0.6质量%、n:0.0022质量%、zn:0.0028质量%、ti:0.0014质量%、nb:0.0010质量%及o:0.0025质量%,余量为fe及不可避免的杂质。此时,使热轧板退火时(加热区、均热区)的露点在-30℃到70℃的范围内进行多种变化。其后,对上述热轧板退火后的钢板进行酸洗、冷轧,以制成最终板厚为0.20mm的冷轧板,在以体积%比记为h2:n2=50:50、露点为-55℃的气氛下实施1000℃×10秒的最终退火。

接下来,从上述最终退火后的钢板的轧制方向(l方向)及宽度方向(c方向)切出宽度30mm×长度180mm的试验片,通过爱普斯坦试验测定(l+c)方向的磁特性。将结果示于图3,可知能够通过将热轧板退火时的露点设为0℃以上来获得优异的铁损特性。

<实验3>

接下来,调查最终退火时的氮分压对磁特性的影响。

将下述钢在真空炉中熔炼、铸造以制成钢锭后,进行热轧以制成板厚为1.8mm的热轧板,在实施920℃×30秒的热轧板退火(加热区、均热区的露点:65℃)并进行酸洗后,进行冷轧以制成最终板厚为0.27mm的冷轧板,实施1020℃×10秒的最终退火,其中,前述钢含有c:0.0028质量%、si:3.6质量%、mn:0.4质量%、p:0.01质量%、s:0.0018质量%、al:1.2质量%、n:0.0021质量%、zn:0.0025质量%、ti:0.0013质量%、nb:0.0009质量%及o:0.0024质量%,余量为fe及不可避免的杂质。此时,使最终退火时的气氛为氢气与氮气的混合气体(露点-55℃),使混合气氛中的氮分压在0~100体积%的范围内进行多种变化。

接下来,从上述最终退火后的钢板的轧制方向(l方向)及宽度方向(c方向)切出宽度30mm×长度180mm的试验片,通过爱普斯坦试验测定(l+c)方向的磁特性。将上述结果示于图4,可知能够通过使最终退火时的氮分压减小至30体积%以下来获得优异的铁损特性。

本发明是在上述<实验1>~<实验3>的结果的基础上进一步研究后完成的。

接下来,说明限定本发明的无方向性电磁钢板的成分组成的理由。

c:0.0050质量%以下

制品板中包含的c为引起磁时效、形成碳化物并析出、使铁损特性劣化的有害元素。因此,原料中包含的c限制为0.0050质量%以下。优选为0.0040质量%以下。需要说明的是,c的下限没有特别规定,但从抑制精炼工序中的脱碳成本的观点出发,优选为0.0001质量%左右。

si:2.8~6.5质量%

si具有增大钢的固有电阻并减少铁损的效果。另外,由于具有通过固溶强化来提高钢的强度的效果,因此含有2.8质量%以上。另一方面,若超过6.5质量%,则很难进行轧制,因此,上限为6.5质量%。优选为3.0~6.0质量%的范围。

mn:0.05~2.0质量%

mn与si同样地,为有助于提高钢的固有电阻和强度的元素。另外,也为形成硫化物来改善热脆性的元素,因此含有0.05质量%以上。另一方面,添加超过2.0质量%会引起钢坯开裂等而使制钢中的操作性恶化,因此上限为2.0质量%。优选为0.1~1.5质量%的范围。

p:0.10质量%以下

p为提高固有电阻而减少涡电流损失的效果大的元素,因此能够适当添加。但是,过量添加p会导致冷轧性恶化,因此上限为0.10质量%。优选为0.05质量%以下。

s:0.0050质量%以下

s会成为硫化物而形成析出物、夹杂物,使制造性(热轧性)、制品板的磁特性下降,因此越少越好。因而,在本发明中,使s的上限为0.0050质量%。优选为0.0030质量%以下。

al:0.3~2.0质量%

al与si同样地,具有提高钢的固有电阻以减少铁损的效果。但是,若超过2.0质量%,则钢脆化,很难进行轧制,因此,上限为2.0质量%。另一方面,若al低于0.3质量%,则形成微细的氮化物并析出,反而使铁损特性恶化,因此下限为0.3质量%。优选为0.4~1.5质量%的范围。

n:0.0050质量%以下

n为形成氮化物而使磁特性劣化的有害元素,因此限制为0.0050质量%以下。优选为0.0040质量%以下。

zn:0.0005~0.0050质量%

zn如上述<实验3>中说明的那样,具有抑制最终退火时的氮化的效果,因此添加0.0005质量%以上。另一方面,若添加超过0.0050质量%,则会形成硫化物,反而使铁损增加,因此限制为0.0050质量%以下。优选为0.001~0.004质量%的范围。

需要说明的是,zn为蒸气压高的元素,因此通常为不混入钢中的元素,但在精炼工序中,存在在为了进行温度调节等而向脱氧后的钢液中添加碎屑(scrap)时混入的情况。因此,为了将zn含量控制为恰当范围,严格选择所使用的原料、碎屑很重要。

ti:0.0030质量%以下、nb:0.0030质量%以下

ti及nb为形成微细的碳氮化物并析出、使铁损增加的有害元素。特别是,若超过0.0030质量%,则上述不良影响变得显著,因此使各自的上限为0.0030质量%。优选分别为0.0020质量%以下。

o:0.0050质量%以下

o为形成氧化物并使磁特性劣化的有害元素,因此限制为0.0050质量%以下。优选为0.0040质量%以下。

在本发明的无方向性电磁钢板中,上述成分以外的余量为fe及不可避免的杂质,但也可以在上述成分的基础上,更具所要求特性而含有以下成分。

sn:0.005~0.20质量%、sb:0.005~0.20质量%

sn及sb具有改善再结晶织构、改善磁通密度、铁损的效果。为了获得上述效果,需要添加0.005质量%以上。但是,即使添加超过0.20质量%,上述效果也已饱和。由此,在添加sn及sb的情况下,分别优选为0.005~0.20质量%的范围。

ca、mg及rem:合计为0.0005~0.020质量%

ca、mg及rem(稀土类金属:rareearthmetal)具有形成稳定的硫化物并改善晶粒生长性的效果。为了获得上述效果,需要添加合计为0.0005质量%以上的ca、mg及rem。但是,即使添加超过0.020质量%,上述效果也已饱和。由此,在添加ca、mg及rem的情况下,优选合计为0.0005~0.020质量%的范围。

cu、ni及cr:合计为0.01~1.0质量%

cu、ni及cr具有提高钢的固有电阻以减少铁损、并提高钢的强度的效果。为了获得上述效果,需要添加合计为0.01质量%以上的cu、ni及cr。但是,添加超过1.0质量%会导致原料成本升高。由此,在添加cu、ni及cr的情况下,优选合计为0.01~1.0质量%的范围。更加优选为0.1~0.5质量%的范围。

接下来,说明本发明的无方向性电磁钢板的制造方法。

本发明的无方向性电磁钢板能够使用包含下述一连串工序的制造方法来制造:制造具有上述成分组成的钢原料(钢坯),对该钢坯进行热轧以制成热轧板,在实施热轧板退火后,通过1次、或夹着中间退火的2次以上的冷轧来制成最终板厚的冷轧板,实施最终退火。以下,具体地进行说明。

首先,对于本发明的无方向性电磁钢板的制造中使用的钢坯而言,采用使用转炉或电炉、真空脱气装置等的通常公知的精炼工艺,对上述具有符合本发明的成分组成的钢进行熔炼,并使用常规的连续铸造法或铸锭-开坯轧制法进行制造。需要说明的是,也可以以直接铸造法制造厚度为100mm以下的薄铸片。

接下来,将上述钢坯使用通常公知的方法进行热轧以制成热轧板。此时,通常将上述钢坯在加热炉中再加热为规定的温度后进行热轧,但也可以在铸造后不进行再加热而直接进行热轧。另外,在薄铸片的情况下,可以进行热轧,也可以省略热轧而直接进入之后的工序。

热轧后的热轧板退火中,优选使均热温度在800~1100℃的范围内。若低于800℃,则热轧板退火的效果小、无法获得充分的磁特性改善效果,另一方面,若超过1100℃,则晶粒粗大化,会助长冷轧时的脆性破坏(板断裂)或对制造成本不利。另外,从确保生产率的观点出发,优选均热时间为3分钟(min)以下。更加优选均热温度为850~1000℃、均热时间为1分钟以下。

需要说明的是,需要使热轧板退火中的加热区及均热区的露点为0℃以上且为70℃以下。若露点低于0℃,则退火时生成的表面的氧化层容易在酸洗时被除去,因此成为最终退火时容易氮化、铁损增加的原因。另一方面,若露点超过70℃,则钢板表面的氧化过度进行,退火时生成的氧化皮难以被除去,从而酸洗负荷增大,妨碍生产率。

接下来,上述热轧板退火后的钢板通过1次冷轧或夹着中间退火的2次以上的冷轧制成最终板厚的冷轧板。从获得铁损减少效果的观点出发,优选冷轧的最终板厚(制品板厚)为0.30mm以下。

接下来,对上述冷轧板实施最终退火并根据需要涂布绝缘被膜以制成制品板。从使晶体粒径粗大化以减少铁损的观点出发,优选上述最终退火的均热条件为900~1200℃×1~120秒的范围。更加优选为1000~1100℃×5~60秒的范围。

在此,在上述最终退火中,为了抑制从钢板表面的渗氮并减少钢板表层中作为aln存在的氮量,重点是需要将气氛和露点控制为恰当范围。具体而言,从抑制退火时的氮化的观点出发,最终退火中的气氛气体为从n2、h2及稀有气体中选择的1种或2种以上的混合气体,且需要使上述气氛气体中的n2的含量为30体积%以下。例如,优选以体积%比计为h2:n2=80:20的气氛。优选的氮分压为50体积%以下。另外,从防止钢板表面氧化的观点出发,需要使露点为-20℃以下。优选的露点为-40℃以下。

实施例

在将具有表1中示出的多种成分组成的钢坯于1120℃加热30分钟后,进行热轧以制成板厚为1.8mm的热轧板。接下来,在表2中示出的条件下对上述热轧板实施热轧板退火,在酸洗后进行冷轧,制成同一表2中示出的最终板厚的冷轧板,并在同一表2中示出的条件下实施最终退火,制成制品板。

从按照上述方式制得的制品板采集样品,从轧制方向(l方向)及宽度方向(c方向)切出宽度30mm×长度180mm的试验片,通过爱普斯坦试验测定(l+c)方向的铁损w10/400。另外,从上述样品采集试验片并进行电解提取分析,以对从钢板的单侧表面到板厚1/20为止的深度中作为aln存在的氮的浓度n1(质量%)、总板厚中作为aln存在的氮的浓度n2(质量%)进行分析,求出从钢板的单侧表面到板厚1/20为止的深度的氮量与总板厚的氮量之比((t×n2)/{(t/10)×n1})。

将上述结果一并示于表2。根据该结果可知,使用具有符合本发明的成分组成的钢原料(钢坯),在符合本发明的条件下制造的钢板均具有优异的铁损特性。

[表1-1]

[表1-2]

[表2-1]

[表2-2]

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1