一种净化结合梯度的高Al+Ti高温合金的热障涂层制备方法与流程

文档序号:22131493发布日期:2020-09-08 12:58阅读:130来源:国知局
一种净化结合梯度的高Al+Ti高温合金的热障涂层制备方法与流程

本发明属于热障涂层表面改性技术领域,具体为一种净化结合梯度的热障涂层制备方法,适用于多种高al+ti(al+ti≥6%,wt%)高温合金表面热障涂层的制备。



背景技术:

微弧火花沉积是一种脉冲显微沉积工艺,它是一种电容放电、微弧熔焊方法,利用可控的能量放电所形成的短时电脉冲产生冶金结合的表面改性或成形。微弧火花表面处理对基体的热影响更小,不会引起工件变形和基体材料的组织改变,并且在氩气保护下,沉积层的结构紧密,组织均匀性较好,涂层不易被氧化夹杂污染,同时涂层有效抑制裂纹产生,起到了良好的界面成分组织净化且抑制裂纹产生,基于此许多用常规熔焊方法不可熔焊的材料常常可以用微弧火花进行熔焊。

电子束物理气相沉积(eb-pvd)设备的蒸发、冷凝功能和涂层的生产是21世纪的关键技术之一,它不仅是一项重要的制造工艺,而且还能为新材料的产生提供极其重要的途径。eb-pvd制备的陶瓷涂层表面粗小,孔隙少、无杂质与微裂纹,可应用于航空发动机叶片、高温合金防护涂层等多方面的要求,且eb-pvd工艺稳定性较好,对热障涂层制备的可靠性及稳定性具有重要意义。

所以,针对高al+ti高温合金(al+ti≥6%,wt%)焊接性极差,极容易产生裂纹的问题,有必要提供一种改进工艺来解决。



技术实现要素:

本发明的目的在于提供一种高al+ti高温合金的热障涂层的制备方法,采用微弧火花制备的mcraltay净化涂层作为中间净化冶金结合的过渡层,粘结eb-pvd制备的陶瓷涂层(y2o3-zro2),这种梯度制备方法可靠,涂层性能均匀一致,可满足航空发动机叶片、高温合金防护涂层等多方面的要求;本发明的净化结合梯度的方法也能为制备热障涂层提供重要的指导意义。

本发明为实现上述目的,采用如下技术方案:

一种净化结合梯度的高al+ti高温合金的热障涂层制备方法,所述方法包括如下步骤:

s1:将高al+ti高温合金表面进行打磨清洗,然后置于真空干燥箱中,在处理温度为100~200℃下干燥处理2h以上;

s2:干燥结束后,采用激光增材制造的微弧火花高纯mcraltay电极,利用微弧火花沉积工艺制备mcraltay净化涂层;其中,工作电压为40~80v,频率500~2000hz,氩气保护流量10~20l/min;

s3:制备结束后,将mcraltay净化涂层进行抛光处理;

s4:抛光处理后,将mcraltay净化涂层置于真空干燥箱中,在处理温度为150~350℃下干燥处理2h以上;

s5:采用电子束物理气相沉积方法制备陶瓷涂层,束流300~400ma,真空度在1×10-2pa以下,沉积时间为30~100min。

本发明通过高纯度的mcraltay微弧火花沉积形成致密的净化沉积层,其净化涂层的净化作用有效抑制了高温合金热障涂层制备过程中产生裂纹,同时高纯的净化涂层无夹杂,与基体冶金结合良好,也为陶瓷涂层粘结提供了良好的过渡层。采用eb-pvd方法制备陶瓷涂层(y2o3-zro2),涂层均匀致密,与mcraltay涂层结合界面均匀可靠,无缺陷产生。eb-pvd制备的陶瓷涂层表面粗小、孔隙少、无杂质与微裂纹,且eb-pvd工艺稳定性较好。本发明的mcraltay净化涂层+(y2o3-zro2)涂层的梯度制备工艺可靠,涂层性能均匀一致。

优选的,所述步骤s3具体包括:采用400#、800#、1000#、2000#砂纸依次打磨mcraltay净化涂层,打磨后采用无水乙醇清洗处理,使mcraltay净化涂层平均厚度在20~200μm。

优选的,所述步骤s5中,沉积陶瓷涂层的平均厚度在20~100μm。

优选的,所述高al+ti高温合金为al+ti含量≥6%的k465镍基高温合金、k438g镍基高温合金、dz125镍基高温合金中的一种。

优选的,所述微弧火花高纯mcraltay电极为微弧火花nicocraltay、nicraltay电极中的一种。

优选的,所述电极的直径为2~5mm,化学纯度≥96wt%,孔隙率≤0.1%,长度为40~60mm。

本发明的优点及有益效果至少包括以下几点:

1、本发明提供的一种净化结合梯度的高al+ti高温合金的热障涂层制备方法,采用高纯度的mcraltay微弧火花沉积净化层mcraltay,首先微弧火花表面处理对基体的热影响更小,不会引起工件变形和基体材料的组织改变;其次净化微弧沉积的作用区域在氩气保护下,沉积层的结构紧密,组织均匀性较好,涂层不易被氧化夹杂污染;最重要的是高纯度的净化涂层可有效抑制高al+ti高温合金焊接裂纹产生,起到了良好的界面成分组织净化、抑制裂纹产生的效果,且净化层与基体冶金结合良好。

2、本发明采用eb-pvd制备陶瓷涂层(y2o3-zro2),涂层均匀致密,与mcraltay涂层结合界面均匀可靠,无缺陷产生,eb-pvd工艺稳定性较好,且eb-pvd制备的陶瓷涂层表面粗小,孔隙少、无杂质与微裂纹。

3、本发明的mcraltay净化涂层+(y2o3-zro2)涂层的净化梯度热障涂层制备工艺可靠,涂层性能均匀一致,可满足航空发动机叶片、高温合金防护涂层等多方面的要求,从而有效提高航空叶片等高温合金的热机械性能。

附图说明

图1为实施例1净化结合的热障涂层显微组织图(其中mcraltay涂层枝晶组织,枝晶平均间距1~2μm)。

图2为k465两种状态(mcraltay涂层、mcraltay净化涂层+y2o3-zro2涂层)在600~900℃机械应变幅为0.5%、0.4%、0.3%下,热机械应变幅—寿命曲线图。

具体实施方式

下面将结合附图与实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围

实施例1

本实施例中,mcraltay电极的合金牌号为nicocraltay,具体化学成分为ni-24.5co-20.0cr-7.5al-4.0ta-0.75y,按重量百分比计算(wt%)。化学纯度在96.5%以上,孔隙率低于0.1%;电极直径φ为4mm,长度为50mm;。

本实施例的高al+ti高温合金的热障涂层按照如下步骤制备:

s1:将k465镍基高温合金表面进行打磨清洗,然后置于真空干燥箱中,在处理温度为150℃下干燥处理2.5h;

s2:干燥结束后,采用激光增材制造的微弧火花高纯mcraltay电极,利用微弧火花沉积工艺制备mcraltay净化涂层;其中,工作电压为60v,频率800hz,氩气保护流量15l/min;

s3:制备结束后,采用400#、800#、1000#、2000#砂纸依次打磨mcraltay净化涂层,打磨后采用无水乙醇清洗处理,保证mcraltay净化涂层平均厚度在40~60μm;

s4:抛光处理后,将mcraltay净化涂层置于真空干燥箱中,在处理温度为250℃下干燥处理3h;

s5:采用电子束物理气相沉积方法制备陶瓷涂层,束流350ma,真空度在1×10-2pa以下,沉积时间为50min,保证沉积陶瓷涂层的平均厚度在37μm。

如图1所示,从净化结合的热障涂层显微组织分析,其中mcraltay涂层枝晶组织致密均匀,枝晶平均间距1~2μm;陶瓷涂层(y2o3-zro2)结合良好,组织结构较为致密。

如图2所示,净化结合梯度的热障涂层mcraltay净化涂层+y2o3-zro2涂层的k465合金热机械疲劳均高于单独的mcraltay净化涂层。

实施例2

本实施例中,mcraltay电极的合金牌号为nicocraltay,具体化学成分为ni-20.0co-22.0cr-4.5al-3.0ta-0.45y,按重量百分比计算(wt%);化学纯度在98%以上,孔隙率低于0.1%;电极直径φ为2mm,长度为40mm。

本实施例的高al+ti高温合金的热障涂层按照如下步骤制备:

s1:将dz125镍基高温合金表面进行打磨清洗,然后置于真空干燥箱中,在处理温度为100℃下干燥处理2h;

s2:干燥结束后,采用激光增材制造的微弧火花高纯mcraltay电极,利用微弧火花沉积工艺制备mcraltay净化涂层;其中,工作电压为40v,频率500hz,氩气保护流量10l/min;

s3:制备结束后,采用400#、800#、1000#、2000#砂纸依次打磨mcraltay净化涂层,打磨后采用无水乙醇清洗处理,保证mcraltay净化涂层平均厚度在20μm;

s4:抛光处理后,将mcraltay净化涂层置于真空干燥箱中,在处理温度为150℃下干燥处理2h;

s5:采用电子束物理气相沉积方法制备陶瓷涂层,束流300ma,真空度在1×10-2pa以下,沉积时间为30min,保证沉积陶瓷涂层的平均厚度在20μm。

本实施例中,通过以上方法处理的净化结合梯度的热障涂层,组织致密均匀,没有裂纹夹杂缺陷存在,形状控制良好。

实施例3

本实施例中,mcraltay电极的合金牌号为nicraltay,具体化学成分为ni--22.0cr-6.5al-3.5ta-0.55y,按重量百分比计算(wt%);化学纯度在97.5%以上,孔隙率低于0.1%;电极直径φ为5mm,长度为60mm。

本实施例的高al+ti高温合金的热障涂层按照如下步骤制备:

s1:将k438g镍基高温合金表面进行打磨清洗,然后置于真空干燥箱中,在处理温度为200℃下干燥处理3h;

s2:干燥结束后,采用激光增材制造的微弧火花高纯mcraltay电极,利用微弧火花沉积工艺制备mcraltay净化涂层;其中,工作电压为80v,频率2000hz,氩气保护流量20l/min;

s3:制备结束后,采用400#、800#、1000#、2000#砂纸依次打磨mcraltay净化涂层,打磨后采用无水乙醇清洗处理,保证mcraltay净化涂层平均厚度在200μm;

s4:抛光处理后,将mcraltay净化涂层置于真空干燥箱中,在处理温度为350℃下干燥处理3h;

s5:采用电子束物理气相沉积方法制备陶瓷涂层,束流400ma,真空度在1×10-2pa以下,沉积时间为100min,保证沉积陶瓷涂层的平均厚度在100μm。

本实施例中,通过以上方法处理的净化结合梯度的热障涂层,组织致密均匀,没有裂纹夹杂缺陷存在,形状控制良好。

实施例结果表明,本发明提供一种净化结合梯度的高al+ti高温合金的热障涂层制备方法,通过微弧火花制备的mcraltay净化涂层能有效且完全抑制高al+ti高温合金表面裂纹产生,起到良好的净化过渡作用;同时由于mcraltay涂层非常致密,能与基体冶金良好结合;eb-pvd制备的陶瓷涂层(y2o3-zro2),涂层均匀致密,与mcraltay涂层结合界面均匀可靠,无缺陷产生。mcraltay净化涂层+(y2o3-zro2)涂层的净化梯度热障涂层制备工艺可靠,涂层性能均匀一致,具有重要的理论指导意义和广阔的应用前景。

最后应说明的是以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1