一种橡胶表面超低摩擦多层复合碳基润滑涂层及其构筑方法

文档序号:26177663发布日期:2021-08-06 18:23阅读:156来源:国知局
一种橡胶表面超低摩擦多层复合碳基润滑涂层及其构筑方法

本发明涉及一种橡胶表面多层复合涂层的构筑,尤其涉及一种超低摩擦碳薄膜/二硫属过渡金属化合物/金属层多层复合碳基润滑涂层的构筑,用于活动密封件的制备,属于固体润滑材料和摩擦学领域。



背景技术:

现代工业设备中存在大量的橡胶密封装置,用以防止工作介质泄漏及外界灰尘和异物侵入。而密封介质一旦泄漏,会直接危及人身安全,带来巨大经济损失。目前,大多密封泄漏事故均与密封件的密封失效有关。因此,密封件密封失效是机械设备密封系统关键共性技术问题之一。当橡胶与金属配副时摩擦系数极高(µ>1),高摩擦产生的摩擦热极易导致橡胶密封件软化而快速磨损失效,使得高压密封介质从受损部位渗漏而密封失效,影响设备的安全可靠服役。因此,解决橡胶密封件磨损失效问题必须从降低摩擦入手。

碳薄膜具有与钢对偶的低粘着特性、沉积温度低(沉积温度≤100℃,不会对丁腈橡胶基体产生致命损伤)、组分及机械强度可控、结构多变(如多微纳结构、多元素掺杂等)、摩擦磨损低等优异性能,因而是实现橡胶表面低摩擦的理想涂层。虽然,传统的碳薄膜能够有效降低橡胶的摩擦,但摩擦系数仍然较高(≥0.2),与钢对钢配副的摩擦系数相当,难以从本质上解决橡胶密封材料的磨损失效问题。

橡胶表面碳薄膜摩擦系数进一步降低的难点在于,橡胶软基底形变导致的低摩擦接触应力,低接触应力使得摩擦对偶表面难以形成转移膜。因此,如何构筑对偶表面转移膜与碳薄膜形成超低摩擦界面,是实现橡胶密封件的超低摩擦特性的关键。



技术实现要素:

本发明的目的是针对现有橡胶表面碳薄膜摩擦系数依然较高的缺陷,提供一种能够在橡胶表面低摩擦接触应力下形成转移膜实现超低摩擦的多层复合碳基润滑涂层及其构筑方法。

一、多层复合碳薄膜的构筑

本发明多层复合碳基润滑涂层,是利用磁控溅射技术在橡胶基底表面依次沉积碳薄膜、二硫属过渡金属化合物膜、金属膜而得。

所述橡胶基底为丁腈橡胶、氟橡胶及硅橡胶中的一种,且橡胶表面粗糙度≤200nm,橡胶厚度为0.5~5mm。

所述的碳薄膜为类金刚石碳基薄膜中的一种;所述二硫属过渡金属化合物为二硫化钼、二硫化钨中的一种;所述的金属层为易粘着金属cu、al、au、ag中的一种。

本发明超低摩擦多层复合碳基固体润滑涂层的构筑方法,包括如下步骤:

(1)基底清洗:将橡胶基底分别用肥皂水、高温去离子水在超声清洗槽中清洗后用氮气吹干,置入镀膜真空室。

(2)基底轰击预处理:利用高能等离子体对基材进行轰击预处理,实现橡胶表面微纳级清洗及表面活化以提高膜基结合强度。具体为:依次用氮等离子体和氩等离子体对橡胶基体进行轰击处理。其中,氮等离子体轰击的条件为:氮气流量200sccm,腔内气压为4~6pa,脉冲偏压为-700v,占空比为50~60%,频率为60~70khz;氩等离子体轰击的条件为:氩气流量300sccm,腔内气压为4~6pa,脉冲偏压为-1200v,占空比为50~60%,频率为60~70khz。

(3)沉积碳薄膜:采用石墨靶,调整靶基距为8~12cm,靶电流为3a,氩气流量为45~60sccm,ar/ch4的流量比为1.5:1,基底偏压为-700v,气压为1~1.5pa,占空比为40~45%,频率为60~70khz,沉积时间为120~150min。

(4)沉积二硫属过渡金属化合物膜;采用二硫属过渡金属化合物靶(二硫化钼或二硫化钨,通过机械压制其粉末所得);通入氩气,调整二硫属过渡金属化合物靶电流为1.5a,氩气流量为45~60sccm,基底偏压-500~-700v,气压保持在0.5~1.5pa,沉积时间为60~80分钟。

(5)沉积金属层:采用cu、al、au、ag中的一种作为金属靶材,通入氩气,调整金属靶电流为2a,基底偏压-500~-700v,调整气压保持在0.5~0.8pa,沉积30~40分钟。

图1为本发明多层复合碳基润滑涂层结构示意图。从图1的结构可见,本发明设计的多层复合薄膜,该膜最表层为易粘着金属层,在摩擦初始阶段很容易转移到钢对偶表面;中间层为二硫属过渡金属化合物,其作为牺牲层转移到对偶表面金属转移膜上,并与碳薄膜形成非公度接触而实现超低摩擦。

二、多层复合碳薄膜的能

采用摩擦磨损试验机对本发明的多层复合碳薄膜进行摩擦学性能评价。摩擦条件为:球-盘旋转模式,法向载荷5n,摩擦对偶为φ6mmgcr15钢球,测试环境为大气。结果显示:常规的纯碳薄膜摩擦系数较高(约0.20),而本发明碳基复合涂层的摩擦系数显著降低(约在0.02~0.05)。可用于制备动密封件。

综上所述,本发明利用磁控溅射技术在橡胶基底表面依次沉积碳薄膜、二硫属过渡金属化合物膜、金属膜,从而获得多层复合碳基薄膜,该膜最表层为易粘着金属层,在摩擦初始阶段很容易转移到钢对偶表面;中间层为二硫属过渡金属化合物,其作为牺牲层转移到对偶表面金属转移膜上,并与碳薄膜形成非公度接触而实现超低摩擦;有效克服了橡胶软表面低摩擦接触应力导致的对偶表面难以形成转移膜的局限,且该转移膜形成过程不依赖于周围气氛环境,可实现大气及各种工况环境下的超低摩擦特性;且其超低摩擦特性不依赖于接触应力和周围气氛环境,可应用于多种复杂工况,易于实现大面积工业化应用。

附图说明

图1为本发明多层复合碳基润滑涂层结构示意图。

具体实施方式

下面采用高真空多功能磁控溅射离子镀膜设备,通过具体实施例对本发明橡胶表面超低摩擦多层复合碳基润滑涂层的构筑方法及摩擦性能做进一步说明

实施例1

(1)将300×300×2mm黑色丁腈橡胶板(表面光洁度ra<200nm,厚度为2mm)切割成30×30mm2的橡胶片,浸泡在60℃肥皂水溶液中超声清洗30min,以除去橡胶表面的油脂和污垢;然后取出并浸泡在90~95℃蒸馏水超声清洗30min,以除去可能残留的肥皂水溶液;最后用干燥氮气吹干后放置于干燥箱中120℃下再干燥20min,以蒸发掉橡胶表面残留水分。上述过程反复进行5次;

(2)待橡胶冷却至室温后,将其置于磁控溅射真空腔内。关闭真空腔门,将真空抽至≤1.0×10–3pa。向真空腔中通入流量200sccm氮气,腔内气压为4pa;打开高功率脉冲偏压电源,利用氮等离子体对橡胶进行轰击处理,其中偏压为-700v,占空比为55%,频率为60khz,处理时间为35min。然后抽干净氮气,再通入300sccm氩气,调整脉冲偏压为-1200v,其他条件不变轰击清洗25min;

(3)轰击结束后,立即通入氩气和甲烷,打开石墨靶溅射电源,调整靶基距为10cm,靶电流为3a,氩气流量为45sccm,ar/ch4的流量比为1.5:1,基底偏压为-700v,气压为1.0pa,占空比为40%,频率为60khz,沉积时间为120min;

(4)关闭甲烷,转动样品架至二硫化钼靶前,调整氩气流量为45sccm,采用高功率脉冲磁控溅射技术溅射二硫化钼靶,靶电流为1.5a,基底偏压-500v,气压保持在0.5pa,沉积时间为60分钟;

(5)转动样品架至金属cu靶前,调整氩气流量使真空腔气压保持在0.5pa,金属靶电流为2a,基底偏压-500v,沉积30分钟。沉积结束后待真空腔内温度冷却至室温后取出样品,即可得到本发明的超低摩擦碳基复合薄膜样品。该碳基复合薄膜样品的摩擦系数为0.02。

实施例2

(1)采用硅橡胶(硅橡胶表面光洁度ra<200nm,厚度为3mm。),预清洗步骤同实施例1;

(2)~(3)同实施例1;

(4)关闭甲烷,转动样品架至二硫化钨靶,调整氩气流量为60sccm,采用高功率脉冲磁控溅射技术溅射二硫化钨靶,靶电流为1.5a,基底偏压-700v,气压保持在1.5pa,沉积时间为80分钟;

(5)转动样品架至金属au靶前,调整氩气使气压保持在0.8pa,采用高功率脉冲磁控溅射技术溅射au靶,调整金靶电流为2a,基底偏压-700v,沉积40分钟。沉积结束后待真空腔内温度冷却至室温后取出样品,即可得到本发明的超低摩擦碳基复合薄膜样品。该碳基复合薄膜样品的摩擦系数为0.04。

实施例3

(1)采用氟橡胶(氟橡胶表面光洁度ra<200nm,厚度为2mm。),预清洗步骤同实施例1;

(2)待橡胶冷却至室温后,将其置于磁控溅射真空腔内。关闭真空腔门,将真空抽至≤1.0×10–3pa。向真空腔中通入流量200sccm氮气,腔内气压为4pa,打开高功率脉冲偏压电源,利用氮等离子体对橡胶进行轰击处理,其中偏压为-700v,占空比为55%,频率为60khz,处理时间为120min。然后抽干净氮气,再通入300sccm氩气,调整脉冲偏压为-1200v,其他条件不变轰击清洗60min;

(3)同实施例1;

(4)关闭甲烷,公转样品架至样品对准二硫化钼靶,调整氩气流量为60sccm,采用高功率脉冲磁控溅射技术溅射二硫化钼靶,靶电流为1.5a,基底偏压-600v,气压保持在1.0pa,沉积时间为75分钟;

(5)转动样品架至金属al靶前,调整氩气使气压保持在0.6pa,采用高功率脉冲磁控溅射技术溅射al靶,调整金属靶电流为2a,基底偏压-600v,沉积30分钟。沉积结束后待真空腔内温度冷却至室温后取出样品,即可得到本发明的超低摩擦碳基复合薄膜样品。该碳基复合薄膜样品的摩擦系数为0.05。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1