一种增强3D打印PEEK材料生物相容性的表面处理方法

文档序号:29362894发布日期:2022-03-23 02:20阅读:930来源:国知局
一种增强3D打印PEEK材料生物相容性的表面处理方法
一种增强3d打印peek材料生物相容性的表面处理方法
技术领域
1.本发明涉及骨植入领域,尤其涉及一种增强3d打印peek材料生物相容性的表面处理方法。


背景技术:

2.聚醚醚酮(peek)作为一种新型的半晶态芳香族塑性工程塑料,具有高熔点(343℃)和优异的力学性能,生物相容性也十分优秀。纯peek的杨氏模量为3.86
±
0.72gpa,经碳纤维增强后可达21.1
±
2.3gpa,与人骨的杨氏模量最为接近,可以有效避免植入人体后与人骨产生的应力遮挡以及松动现象,是一种理想的骨科植入物材料。采用3d打印技术制造的peek植入体能够很好地满足不同病人不同病情的个性化植入物订制需求,目前国内3d打印peek植入物已经在临床上取得了较好的效果。peek在脊柱手术,外伤和骨科类医疗产品的临床应用越来越广泛。但是由于peek相对疏水的表面具有较低的表面能,从而限制了细胞的黏附。peek的这种生物惰性使得peek植入体与宿主骨组织之间的骨整合能力较差,在临床上经常会碰到许多并发症,如种植体移位、笼陷或假性关节,这在体外和临床应用研究中都导致了令人不满意的结果。
3.金属钽(ta)具有良好的耐腐蚀性、生物相容性与骨生物活性。生物组织在植入一段时间后会在钽上生长,就像在真实骨骼上生长一样,钽因此也被称为“亲金属”。作为涂层将ta涂覆在某些医用材料表面,一方面可有效阻止有毒元素的释放,另一方面可提高金属材料的生物相容性。钽涂层能满足理想的骨移植材料三要素,即骨传导、骨诱导和骨生成作用,从而临床应用越加广泛。
4.理想的peek表面应能使细胞黏附、增殖、成骨细胞分化,促进peek植入体表面的矿化,产生大量的骨融合。但在植入过程中,这类骨植入材料易受到细菌感染而引起植入体松动导致植入失败,因此常常需要在植入体表面加入抗菌剂以抑制此类不良影响,无机抗菌剂具有抗菌效果好、持续时间长、无耐药性等优点,展现出更为广阔的应用前景。在本发明中,采用物理气相沉积技术(pvd)将金属ta以及无机抗菌材料沉积在peek材料表面,制成的新型植入体可弥补peek材料在生物相容性、生物活性、抗菌性及种植体-骨性结合等方面所存在的不足。


技术实现要素:

5.本发明的目的是为了解决上述问题,提供一种增强3d打印peek材料生物相容性的表面处理方法,包括如下步骤:
6.步骤s1:对peek材料表面工艺处理,提高表面光洁度,并消除peek材料表面的粉尘颗粒;
7.步骤s2:采用物理气相沉积技术,将纯ta或ta与其他金属及其氧化物的复合靶材沉积在peek材料的表面,得到peek基体涂层材料。
8.进一步地,所述步骤s1中,对peek表面工艺处理过程包括如下步骤:
9.步骤s11:对所述peek材料进行喷砂处理;
10.步骤s12:用200-3000目的砂纸以及金刚石研磨膏对喷砂处理后的所述peek材料进行打磨抛光处理;
11.步骤s13:将经过喷砂处理的所述peek材料置于丙酮溶液中进行第一次超声波震荡清洗;
12.步骤s14:使用无水乙醇和去离子水依次对上述peek材料进行第二次超声波清洗和第三次超声波清洗。
13.进一步地,所述步骤s11中,所述喷砂处理具体为:利用压缩空气形成的高速喷射束将砂砾喷射到样品表面,喷射时间为1-120min。
14.进一步地,所述步骤s13中,所述第一次超声波震荡清洗的时间为5-60min。
15.进一步地,所述步骤s14中,所述第二次超声波清洗和所述第三次超声清洗的次数皆为2-3次,每次清洗时间皆为5-60min。
16.进一步地,所述步骤s2中,所述物理气相沉积技术采用真空溅射镀膜技术。
17.进一步地,所述真空溅射镀膜的工艺参数为:
18.peek材料在真空环境和温室条件下进行溅射沉积,工作气体为氩气,工作气压为0.1-2.5mpa,所述氩气的气体流量为15-90sccm,纯ta或ta与其他金属及其氧化物的复合靶材与基体的距离为10-50mm,溅射功率为30-200w,溅射时间根据使用需求确定为5-120min。
19.进一步地,经过真空溅射镀膜后的所述peek涂层材料的涂层厚度在微米级1-1000μm之间可调。
20.进一步地,所述真空溅射镀膜技术采用射频溅射沉积或磁控溅射沉积的方法。
21.与现有技术相比,本发明的有益效果主要体现在:本发明首次提出采用pvd技术在3d打印peek材料表面镀纯钽金属或含钽的复合涂层,用于提高peek植入物的生物相容性;且pvd技术制备的涂层与peek材料形成紧密的机械结合,具有很高的结合强度,可防止涂层脱落;金属ta具有良好的成骨性,cu、ag、tio2、zno等具有良好的抗菌性,可提高peek材料作为永久植入材料的生物相容性。
附图说明
22.图1为本发明所述的增强3d打印peek材料表面处理制备工艺流程图;
23.图2为实施步骤s1处理后3d打印peek材料表面形貌图;
24.图3为实施步骤s2后3d打印peek材料表面形貌图;
25.图4为制备的peek基体的ta涂层微观形貌图;
26.图5为制备的peek基体的ta涂层的截面形貌图;
27.图6为纯ppek和不同实施例之间的摩擦系数对比图;
28.图7为纯ppek和不同实施例之间的接触角实验对比图。
具体实施方式
29.下面将结合示意图对本发明一种增强3d打印peek材料生物相容性的表面处理方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果,因此,下列描述应当被理解为对于本
领域技术人员的广泛知道,而并不作为对本发明的限制。
30.在本发明的描述中,需要说明的是,对于方位词,如有术语“中心”,“横向”、“纵向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示方位和位置关系为基于附图所示的方位或位置关系,仅是为了便于叙述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定方位构造和操作,不能理解为限制本发明的具体保护范围。
31.如图1所示,一种增强3d打印peek材料生物相容性的表面处理方法,包括如下步骤:
32.步骤1:对聚醚醚酮(peek)表面进行处理,提高表面光洁度,消除3d打印peek表面粉尘颗粒,其具体处理工序为:
33.喷砂:将3d打印peek材料首先进行喷砂处理(可选用石英砂或金刚砂等),利用压缩空气形成的高速喷射束喷射到样品表面,喷射时间为1-120mi n,以获得具有一定表面光洁度的peek材料,这种方法可初步除去peek材料的大部分粉尘颗粒。
34.进一步的,打磨抛光:将经过喷砂处理的peek材料在200-3000目的砂纸及金刚石研磨膏下进行打磨抛光处理,该过程需保证经打磨抛光处理的peek材料表面无明显划痕,该过程可在一定程度上提高金属的沉积效率,提高涂层表面光洁度。
35.进一步的,超声波清洗:将经过喷砂处理的peek材料置于丙酮溶液中进行超声震荡清洗5-60min,再用无水乙醇超声清洗,清洗2-3次,每次清洗时间为5-60min;最后用去离子水超声清洗,清洗2-3次,每次清洗时间为5-60min,去除残留丙酮。这种方法可完全去除peek表面残留的粉尘颗粒,达到溅射镀膜的表面工艺条件,如图2所示。
36.步骤2:采用物理气相沉积(pvd)技术,将纯ta沉积在聚醚醚酮的表面上,得到peek基涂层材料。
37.其中,物理气相沉积(pvd)技术具体可用真空溅射镀膜(射频溅射或磁控溅射)的方法。
38.在步骤2中,将纯ta靶材沉积在peek表面,其采用真空溅射镀膜的工艺参数为:
39.在真空环境和室温条件下进行溅射沉积,具体可用射频溅射沉积或磁控溅射沉积的方法,工作气体为氩气,工作气压为0.1-2.5mpa,氩气气体流量为15-90sccm,纯ta靶材与基体的距离为10-50mm,溅射功率为30-200w,溅射时间根据使用需求可界定为5-120min。
40.这种方法制备的涂层表面致密平整,厚度在1-1000μm范围内。如图3-5所示。
41.当前多数研究主要采用在peek粉体中加入tio2、羟基磷灰石(ha)等纳米颗粒的方式来改善peek材料的生物相容性。纳米颗粒的加入存在混合不均匀、表面颗粒含量不足以改善界面成骨性、以及颗粒脱落的问题。而我们的pvd镀钽工艺可以完全覆盖peek表面,阻止颗粒脱落,并与骨组织形成完全的结合。
42.已有的表面涂层改性材料包括高分子材料壳聚糖、胶原蛋白,金属ti,无机材hap等。首先,这些材料的成骨性均劣于金属钽。其次,高分子材料和无机材料在人体内的降解会破坏peek与骨组织的结合。金属ta在人体环境中具有生物惰性,不会发生降解,因此可以保持长期稳定性。
43.在本发明中,peek的表面涂层可以根据需要通过调整工艺参数来控制涂层厚度,表面具有生物活性涂层也可以是除ta以外的一种或几种复合涂层,可进一步提高成骨能
力。
44.实施例1:
45.该实施例前处理包括上述喷砂工序和超声波清洗工序,上述打磨抛光工序可做可不做。
46.真空溅射镀膜的具体参数为:
47.采用磁控溅射技术进行镀膜,工作气体选用氩气,预溅射阶段气体流量为40sccm,工作气体流量为30sccm。纯ta靶材与peek材料的距离为40mm,工作气压为0.5pa,溅射功率为100w,溅射时间为30min,最后所得产品的涂层平均厚度为312μm。
48.实施例2:
49.该实施例前处理包括上述喷砂、打磨抛光和超声波清洗这全部3道工序。
50.真空溅射镀膜的具体参数为:
51.采用磁控溅射技术进行镀膜,工作气体选用氩气,预溅射阶段气体流量为40sccm,工作气体流量为25sccm。纯ta靶材与纯cu组成复合靶材与peek材料的距离为40mm,工作气压为0.3pa,溅射功率为100w,溅射时间为60min,最后所得产品的涂层平均厚度为659μm。
52.实施例3:
53.该实施例前处理包括上述喷砂、打磨抛光和超声波清洗这3道全部工序。
54.真空溅射镀膜的具体参数为:
55.采用磁控溅射技术进行镀膜,工作气体选用氩气,预溅射阶段气体流量为40sccm,工作气体流量为30sccm。纯ta、纯cu和纯ag组成的复合靶材与peek材料的距离为40mm,工作气压为0.5pa,溅射功率为100w,溅射时间为30min,最后所得产品的涂层平均厚度为174μm。
56.实施例4:
57.该实施例前处理包括上述喷砂工序和超声波清洗工序,上述打磨抛光工序可做可不做。
58.真空溅射镀膜的具体参数为:
59.采用磁控溅射技术进行镀膜,工作气体选用氩气,预溅射阶段气体流量为40sccm,工作气体流量为30sccm。纯ta与tio2组成的复合靶材与peek材料的距离为40mm,工作气压为0.5pa,溅射功率为100w,溅射时间为10min,最后所得产品的涂层平均厚度为56μm。
60.实施例5:
61.该实施例前处理包括上述喷砂工序和超声波清洗工序,上述打磨抛光工序可做可不做。
62.真空溅射镀膜的具体参数为:
63.采用磁控溅射技术进行镀膜,工作气体选用氩气,预溅射阶段气体流量为40sccm,工作气体流量为30sccm。纯ta与zno组成的复合靶材靶材与peek材料的距离为40mm,工作气压为0.5pa,溅射功率为100w,溅射时间为5min,最后所得产品的涂层平均厚度为27μm。
64.参考表格1,表格1为5个实施例的参数控制对比表。
[0065][0066]
一、摩擦磨损性能
[0067]
为评价钽增强peek涂层的摩擦磨损性能,对实施例1-5进行摩擦磨损实验。其实验过程如下:
[0068]
将实施例1-5分别置于往复式磨损试验机下测试摩擦系数与时间的关系,采用直径为8mm的gcr15钢球作为摩擦副,磨损时附加载荷为25n,滑动距离为4mm,磨损时间为30min。
[0069]
结合图6可以看出,在表面镀含有ta涂层后的摩擦系数未发生较大的改变,其平均摩擦系数在0.4-0.45,纯peek材料摩擦系数为0.38-0.40。peek材料本身即具有突出的耐摩擦磨损性能,而ta涂层的加入在改善生物特性的情况下依旧能够保持其优秀的耐磨性能。
[0070]
二、润湿性评价(接触角实验)
[0071]
润湿性直接影响骨植入材料与组织中蛋白和细胞的黏附能力,为评价材料的生物相容性,除抗菌及细胞毒性实验外,还需进行润湿性评价。
[0072]
结合图7可发现实施例2和实施例3分别为peek材料表面镀ta和cu的复合涂层以及ta、cu和ag的复合涂层,经过打磨抛光前处理和pvd镀膜工艺,两种涂层表面的接触角均有显著的下降,分别达到93.5
°
和91.7
°
,即对peek表面涂层进行改性处理后,可以在保持其良好的生物相容性的前提下,显著降低其接触角,在一定的成分比下,可以转为亲水性材料。
[0073]
对于实施例4和实施例5,在peek表面镀ta与tio2或zno的复合涂层也可以在一定程度上降低其接触角,分别为104.9
°
和109.7
°
。而cu、ag、tio2和zno具有良好的抗菌性,这种复合涂层既可以保证良好的成骨特性,也提高了其抗菌性,可有效避免因细菌感染造成的不良影响。
[0074]
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1