一种新型NbHfZrU系含铀高熵合金的制作方法

文档序号:30265718发布日期:2022-06-02 04:03阅读:288来源:国知局
一种新型nbhfzru系含铀高熵合金
技术领域
1.本发明属于合金燃料材料领域,特别是涉及一种可用作核燃料的新型高熵合金及其制备方法。


背景技术:

2.高熵合金作为一种新型多主元固溶体合金,其多主元效应使其具有强度高、耐热性好等一系列优异的综合性能,因此高熵合金设计思路具有极大的发展潜力。近年来的相关研究表明,高熵合金还具有优于传统抗辐照合金的抗辐照性。文献报道了通过原位透射电镜观察快电子辐照作用下的单相fcc结构cocrcufeni高熵合金的组织演变过程,发现该高熵合金在25~500℃温度范围内未发生明显的结构演变现象,相结构及晶粒大小均保持稳定。此外该团队还发现单相bcc结构的zr-hf-nb合金在25℃,辐照损伤量达到10dpa的电子辐照条件下结构保持稳定。因此,高熵合金具备在高温辐照条件下的核反应堆服役的能力,在核领域具有广泛的应用前景,然而目前含铀可用作金属型核燃料的高熵合金开发工作鲜见报道。
3.核燃料可分为陶瓷型核燃料、弥散型核燃料以及金属型核燃料三种,其中金属型燃料主要是指铀及其合金,包括u-zr、u-pu-zr等燃料。传统金属型核燃料具有易裂变原子密度高,导热率高,易加工等优点,但其抗辐照性能非常差,容易发生辐照生长以及由于裂变气体的产生造成辐照肿胀现象,服役寿命短。u元素作为核裂变的主要燃料,通过加入铌、钛等微量元素,可以提高其耐蚀性,并从根本上改变其力学性能,且可与nb、zr、hf等元素形成bcc结构的无限固溶体高熵合金,包括具有单相bcc结构的[tanb]0.31(tiuhf)0.69和umonbtahf合金,以及具有双相bcc结构的umonbtati高熵合金,含铀合金的高熵化使含铀合金的综合性能得到明显提升,也为设计新型含铀可用作核燃料的高熵合金提供了理论基础。
[0004]
而作为bcc结构高熵合金的常见主元,具有高熔点高硬度特性的hf元素的添加可以显著增强高熵合金的强度及硬度。譬如,有人研究制备了uhfnbti系单相bcc结构高熵合金,发现该高熵合金具备优异的力学性能。此外,相较于nb、zr等低热中子吸收截面元素,hf元素热中子的吸收截面高出了1~2个数量级,为115barn,因此通过适当调节hf元素含量可以调控高熵合金的热中子吸收截面,使其应用于诸多核领域场景,从而表现出结构功能一体化特征。
[0005]
然而,目前对于nbhfzru系高熵合金的研究还鲜见报道,对于u、hf等元素在nb-hf-zr-u体系中的作用机理也尚不明晰。开发基于nb-ti-zr-u体系以及nb-hf-zr-u体系的高熵合金,并充分考虑u、hf元素可用作核燃料的特殊作用,从而实现含铀高熵合金的结构功能一体化,对于开发新型高强韧吸收中子的金属型燃料相以及促进核材料领域的安全发展具有重要意义。


技术实现要素:

[0006]
针对目前抗辐照性能差的传统金属型燃料如uzr、u-pu-zr等合金,高温易相变、在反应堆长时间照射后容易发生辐照损伤以及裂变产物引起辐照肿胀等瓶颈问题,同时其他研究对于含u高熵合金燃料的研究未给予充分的重视,本发明提出一种可用作核燃料的基于nb-hf-zr-u系的高熵合金,并充分考虑u、hf元素的特殊作用,从而实现高熵合金的结构功能一体化。
[0007]
本发明的含铀元素基于nb-hf-zr-u体系可用作核燃料的结构功能一体化高熵合金,组分按原子百分比为:铌:15~60%;锆:10~35 %;铪:10~35%;铀:15~50 %;铝:0.01~10%;余量为铬元素和不可避免的杂质。
[0008]
上述技术方案的进一步改进与优化,其组分按原子百分比为:铌:15~35 %;锆:10~35 %;铪:10~35 %;铀:30~50 %;铝:0.01~10%,余量为铬元素和不可避免的杂质。
[0009]
上述技术方案的进一步改进与优化,其组分按原子百分比为:铌:15 %;锆: 10%;铪: 10%;铀:50 %;铝:10%,余量为铬元素和不可避免的杂质。
[0010]
上述技术方案的进一步改进与优化,其组分按原子百分比为:铌:35~60 %;锆:10~35 %;铪:10~15 %;铀:15~30 %;铝:0.01~10%,余量为铬元素和不可避免的杂质。
[0011]
上述技术方案的进一步改进与优化,其组分按原子百分比为:铌:35 %;锆: 10 %;铪:15%;铀:30 %;铝:9.99%,余量为铬元素和不可避免的杂质。
[0012]
上述技术方案的进一步改进与优化,其组分按原子百分比为:铌:15~35 %;锆:10~35 %;铪:10~35 %;铀:15~30 %;铝:0.01~4.99 %,余量为铬元素和不可避免的杂质。
[0013]
所述的一种含铀元素基于nb-hf-zr-u系可用作核燃料的结构功能一体化高熵合金,拉伸屈服强度:887~1379 mpa,塑性:6~15 %。
[0014]
本发明的一种含铀元素基于nb-hf-zr-u系可用作核燃料的结构功能一体化高熵合金的制备方法,具体包括如下步骤:(1)准备原料:按nb-hf-zr-u系高熵合金配比称取所需合金原料;(2)电弧熔炼:在保护气体保护下,将nb、hf、zr、u、al、cr粉迅速加热熔化;为获得成分均匀的合金铸锭,所有试样反复熔炼五遍,每遍熔炼后均将试样翻转。为避免熔炼时间、熔炼电流差异等引起对试样组织结构及性能可能产生一定的影响,因此每个试样在每一遍熔炼时均待所有合金元素完全熔化为液态后,保持熔炼1 min后直接关闭电流。确保所有熔炼后试样的表面保持光亮,即在熔炼制备的过程中合金没有发生明显的氧化。
[0015]
有益效果:本发明提出的一种含铀元素基于nb-hf-zr-u体系可用作核燃料的结构功能一体化高熵合金,由于u元素的加入,合金的强度与传统bcc结构多主元合金nbtihfzr相比,室温下的强度有较大提升;此外,al、cr元素的加入在保留较高屈服强度的前提下提升了该合金的高温抗氧化性能,使得这种高熵合金可广泛应用于核工业领域;hf元素作为一种高热中子吸收截面元素,可以在提高合金力学性能的同时调控合金的热中子吸收截面系数;更为重要的是,该高熵合金含有u元素,其服役于反应堆时不仅可以保持良好的机械性能,而且可以作为反应堆的核燃料提供能量,从而为核燃料研究领域提供了具有机械性能良好、耐高温氧化、耐辐照特性的最佳候选材料。因此,本发明提出的一种基于nb-hf-zr-u体系的高熵合金,通过充分考虑u元素的特殊作用,实现了高熵合金的结构功能一体化,对于新型高
熵金属型核燃料领域的发展和应用具有重要意义。
具体实施方式
[0016]
为了使本发明的目的、技术方案及优点更加清楚明白,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
[0017]
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可完全理解本发明。下面结合具体实施方式,对本发明进一步说明。
[0018]
实施例1一种新型nb-hf-zr-u系的含铀高熵合金,具体合金成分为:15 at.% nb,10 %zr,10% hf,50% u,10% al,5% cr,其余为不可避免的杂质元素。
[0019]
本实施例的新型含铀高熵合金的制备方法为:(1)准备原料:按新型含铀高熵nb-hf-zr-u-al-cr合金的配比称取所需合金原料,具体合金成分为:15 at.% nb,10%zr,10% hf,50% u,10% al,5% cr;(2)电弧熔炼:在保护气体保护下,将nb、hf、zr、u、al、cr粉迅速加热熔化;为获得成分均匀的合金铸锭,所有试样反复熔炼五遍,每遍熔炼后均将试样翻转。为避免熔炼时间、熔炼电流差异等引起对试样组织结构及性能可能产生一定的影响,因此每个试样在每一遍熔炼时均待所有合金元素完全熔化为液态后,保持熔炼1 min后直接关闭电流。
[0020]
本实施例制得的新型含铀高熵nb-hf-zr-u-al-cr合金铸锭的力学性能测试表明:拉伸屈服强度为1379 mpa,塑性为~6%,表现出了超高的强度特性。
[0021]
实施例2一种新型nb-hf-zr-u系的含铀高熵合金,具体合金成分为:35 at.% nb,10 %zr,15% hf,30% u,9.99% al,0.01% cr,其余为不可避免的杂质元素。
[0022]
本实施例的新型含铀高熵合金的制备方法为:(1)准备原料:按新型含铀高熵nb-hf-zr-u-al-cr合金的配比称取所需合金原料,具体合金成分为:35 at.% nb,10%zr,15% hf,30% u,9.99% al,0.01% cr;(2)电弧熔炼:在保护气体保护下,将nb、hf、zr、u、al、cr粉迅速加热熔化;为获得成分均匀的合金铸锭,所有试样反复熔炼五遍,每遍熔炼后均将试样翻转。为避免熔炼时间、熔炼电流差异等引起对试样组织结构及性能可能产生一定的影响,因此每个试样在每一遍熔炼时均待所有合金元素完全熔化为液态后,保持熔炼1 min后直接关闭电流。
[0023]
本实施例制得的新型含铀高熵nb-hf-zr-u-al-cr合金铸锭的力学性能测试表明:拉伸屈服强度为1245 mpa,塑性为~7%,表现出了良好力学性能匹配特性。
[0024]
实施例3一种新型nb-hf-zr-u系的含铀高熵合金,具体合金成分为:60 at.% nb,10 %zr,10% hf,15% u,0.01% al,4.99% cr,其余为不可避免的杂质元素。
[0025]
本实施例的新型含铀高熵合金的制备方法为:(1)准备原料:按新型含铀高熵nb-hf-zr-u-al-cr合金的配比称取所需合金原料,具体合金成分为:60 at.% nb,10%zr,10% hf,15% u,0.01% al,4.99% cr;
(2)电弧熔炼:在保护气体保护下,将nb、hf、zr、u、al、cr粉迅速加热熔化;为获得成分均匀的合金铸锭,所有试样反复熔炼五遍,每遍熔炼后均将试样翻转。为避免熔炼时间、熔炼电流差异等引起对试样组织结构及性能可能产生一定的影响,因此每个试样在每一遍熔炼时均待所有合金元素完全熔化为液态后,保持熔炼1 min后直接关闭电流。
[0026]
本实施例制得的新型含铀高熵nb-hf-zr-u-al-cr合金铸锭的力学性能测试表明:拉伸屈服强度为1132 mpa,塑性为~10%,表现出了良好的强塑性兼备特性。
[0027]
实施例4一种新型nb-hf-zr-u系的含铀高熵合金,具体合金成分为:15 at.% nb,35 %zr,10% hf,29.9% u,0.01% al,10% cr,其余为不可避免的杂质元素。
[0028]
本实施例的新型含铀高熵合金的制备方法为:(1)准备原料:按新型含铀高熵nb-hf-zr-u-al-cr合金的配比称取所需合金原料,具体合金成分为:15 at.% nb,35%zr,10% hf,29.9% u,0.01% al,10% cr;(2)电弧熔炼:在保护气体保护下,将nb、hf、zr、u、al、cr粉迅速加热熔化;为获得成分均匀的合金铸锭,所有试样反复熔炼五遍,每遍熔炼后均将试样翻转。为避免熔炼时间、熔炼电流差异等引起对试样组织结构及性能可能产生一定的影响,因此每个试样在每一遍熔炼时均待所有合金元素完全熔化为液态后,保持熔炼1 min后直接关闭电流。
[0029]
本实施例制得的新型含铀高熵nb-hf-zr-u-al-cr合金铸锭的力学性能测试表明:拉伸屈服强度为1002 mpa,塑性为~13%,表现出优良的塑性的同时保持良好的强度。
[0030]
实施例5一种新型nb-hf-zr-u系的含铀高熵合金,具体合金成分为:35 at.% nb,10 %zr,35% hf,15% u,4.99% al,0.01% cr,其余为不可避免的杂质元素。
[0031]
本实施例的新型含铀高熵合金的制备方法为:(1)准备原料:按新型含铀高熵nb-hf-zr-u-al-cr合金的配比称取所需合金原料,具体合金成分为:35 at.% nb,10%zr,35% hf,15% u,4.99% al,0.01% cr;(2)电弧熔炼:在保护气体保护下,将nb、hf、zr、u、al、cr粉迅速加热熔化;为获得成分均匀的合金铸锭,所有试样反复熔炼五遍,每遍熔炼后均将试样翻转。为避免熔炼时间、熔炼电流差异等引起对试样组织结构及性能可能产生一定的影响,因此每个试样在每一遍熔炼时均待所有合金元素完全熔化为液态后,保持熔炼1 min后直接关闭电流。
[0032]
本实施例制得的新型含铀高熵nb-hf-zr-u-al-cr合金铸锭的力学性能测试表明:拉伸屈服强度为887 mpa,塑性为~15%,表现出了良好的强度和塑性匹配特性。
[0033]
本发明提供的一种新型含铀高熵nb-hf-zr-u系合金及其制备方法,其相对于现有的材料,具备以下优越性:1. 由于u元素的加入,该高熵合金相较于多主元bcc结构的nbhfzr合金,室温下的屈服强度有较大提升,譬如,u含量为15 at.%的nb35-hf35-zr10-u15-al4.99-cr0.01合金的压缩屈服强度~ 887mpa,提升u含量至50 at.%后nb15-hf10-zr10-u50-al10-cr5合金的拉伸屈服强度提升至~1379mpa;2. al元素和cr元素的加入,在较大程度上保证强塑性的同时提高了合金的抗高温氧化性,提高了工业应用价值,使得nbhfzru系高熵合金在高温辐照核反应堆的条件下具有良好的应用前景;
3. hf元素的加入,提高了nbhfzru系高熵合金的力学性能,同时其高热中子吸收截面也起到了调控nbhfzru系高熵合金中子吸收能力的作用,使其应用于诸多核领域场景;4. 由于高含量u元素的加入,新型的nb-hf-zr-u系高熵合金还可以作为核反应堆应用的核燃料,从而为金属型核燃料领域提供了高强韧兼备、具有良好抗辐照特性的最佳候选燃料,实现了结构功能一体化特性。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1