一种laves相可控的cr
x
monbwti难熔高熵合金及其制备方法
技术领域
1.本发明属于难熔高熵合金组织性能调控领域,具体涉及一种laves相可控的cr
x
monbwti难熔高熵合金及其制备方法。
背景技术:
2.难熔高熵合金因其高熔点、多主元高度固溶、强烈晶格畸变和迟滞扩散效应等特征,具有较高的室温/高温强度、优异的抗蠕变、抗氧化、耐磨损等性能特点,拥有替代镍基高温合金作为新一代航空航天高温结构材料的巨大潜力,有望大幅拓展金属材料的服役温度区间,拥有极为广阔的应用前景。
3.随着难熔高熵合金的快速发展,大量不同成分体系的难熔高熵合金被设计和制造出来。近些年,为进一步提升难熔高熵合金力学性能,通常会设计一些具有高形成焓的元素组合(如,cr-nb、v-zr、cr-ti等),在形成多主元固溶体相的同时,析出适量的laves金属间化合物,并通过阻碍位错运动进一步提升材料强度。我们的前期研究结果表明cr
x
monbwti难熔高熵合金具有优良的高温力学性能和抗氧化性能,具有广阔的高温应用前景。但该合金在室温加载时,通常会在弹性变形阶段就发生提前断裂现象,其断裂强度远低于其潜在屈服强度(即位错启动所需应力)。经大量实验对比及组织性能分析,我们发现合金内形成过多的laves相是导致材料发生提前断裂的重要诱因。因此,如何制备出laves相可控的cr
x
monbwti高熵合金,进一步提高合金力学性能,避免合金出现室温提前断裂现象,是推动cr
x
monbwti高熵合金快速步入应用的关键环节之一。
技术实现要素:
4.本发明的目的在于提供一种laves相可控的cr
x
monbwti难熔高熵合金及其制备方法,解决含cr难熔高熵合金中laves相含量过多而导致的材料提前断裂的问题。本发明采用机械合金化和粉末冶金的方式制备cr
x
monbwti难熔高熵合金坯体,再采用高温热处理的方式,增强合金体系的熵稳定效应,提高了laves金属间化合物向基体回溶的倾向,进而减少合金中laves相含量,且laves相由初始的长条状转为颗粒状,进一步减小了合金内的应力集中,使材料在断裂前能够呈现出一定的塑性,避免了材料因大量laves金属间化合物的存在而造成提前断裂的问题。本发明的提出的方法工艺简单、对设备要求低、无需对合金成分进行调整,调控后合金的强度、塑性、耐磨性等力学性能均提升显著;此外,由于合金成分无需调整,因此其密度、抗氧化性等物理性能不受影响。
5.本发明的技术方案:
6.一种laves相可控的cr
x
monbwti难熔高熵合金的制备方法,以cr、mo、nb、w、ti五种金属粉末作为高熵合金的原始材料,首先通过高能球磨法将金属元素进行机械合金化,形成单一bcc结构的过饱和多主元固溶体,控制其氧含量在1.5-2.5%(质量分数),氮含量在0.7-1.8%(质量分数);利用热压烧结或放电等离子烧结制备高熵合金坯体;最后,根据合金成分及laves相含量精细设计高温热处理工艺,对其组织性能进行进一步调控,获得最终
组织性能可控的高性能cr
x
monbwti难熔高熵合金。
7.进一步的,一种laves相可控的cr
x
monbwti难熔高熵合金的制备方法,具体步骤如下:
8.1)机械合金化:取各金属元素的粉体放入球磨罐中,其中,cr:mo:nb:w:ti的摩尔比为1-2:1:1:1:1;加入磨球介质,抽真空至1.5-3kpa,以200~400r/min的转速进行球磨24~72h,使五种金属粉体形成单一bcc结构的过饱和固溶体;
9.2)粉末冶金:将过饱和固溶体置于石墨模具中,在真空或氩气保护下,利用热压或放电等离子烧结的粉末冶金方法制备高熵合金坯体,施加15-50mpa的单轴压力,烧结温度为1400-1500℃,保温时间为30-120min,随炉冷却至室温,得到高熵合金坯体;
10.3)高温热处理:将所得cr
x
monbwti难熔高熵合金坯体至于真空热处理炉内,热处理温度为1500-1750℃,保温时间为20-120min,冷却速度为:10-1000℃/min,或采取淬火,得到组织性能可控的高性能cr
x
monbwti难熔高熵合金。
11.本发明的优点和有益效果在于:
12.本发明提出了一种laves相可控的cr
x
monbwti难熔高熵合金及其制备方法,通过机械合金化和粉末冶金的方式制备cr
x
monbwti难熔高熵合金坯体,再采用高温热处理的方式,增强合金体系的熵稳定效应,对合金内laves相的含量及形貌进行精细调控,使材料在断裂前能够呈现出一定的塑性,避免了材料因大量laves金属间化合物的存在而造成提前断裂的问题。经调控后的cr
x
monbwti高熵合金兼具优良的强度和硬度,室温屈服强度可达到3400mpa,硬度可达10.4gpa。
具体实施方式
13.下面进一步通过实施例以详细说明本发明。但应注意,以下所述是对本发明的解释而并非限定。
14.实施例1
15.1)原材料的配置与机械合金化
16.称取等摩尔比的cr、mo、nb、w、ti金属粉末并置入球磨罐中,其中,cr的纯度为99.5%,其余金属粉末纯度为99.9%,平均粒径为45微米;加入数量比为1:3的碳化钨大球和小球并保持磨球的质量与原料粉末的质量比为10:1;抽真空至2kpa;最后在行星式球磨机上以350转/min的转速球磨48h,得到合金化粉体。将得到的合金化粉体至于真空干燥箱中,抽真空至《0.1kpa,以30℃的恒温真空干燥5小时随后冷却3小时至室温,得到干燥的粉体。
17.2)热压烧结
18.将合金化粉体置入石墨模具中,以10℃/min的升温速率升到800℃后施加40mpa的压力,随后升温至1450℃得到高熵合金烧结体,保温时间为1h随后以10℃/min的冷却速度冷却至1000℃后随炉冷却至室温。研究结果表明,烧结体中含有体积分数约为25%的laves相,其室温强度为2700mpa,断裂前无任何塑性,呈现提前断裂状态。
19.3)高温热处理
20.对烧结体坯体进行高温热处理,热处理升温速率为10℃/min,热处理温度为1550℃,保温时间为1h,随后以20℃/min的速率进行降温。所得改性的难熔高熵合金laves相体
积分数降至18%,且laves相由长条状转为颗粒状。其室温屈服强度提升至~3500mpa,硬度为10.4gpa,室温塑性为1.4%。
21.实施例2
22.与实施例1中的步骤类似,所不同的是,热处理温度改为1650℃,所得改性的难熔高熵合金laves相体积分数降至16%。其室温屈服强度提升至~3300mpa,硬度为9.6gpa,室温塑性为2.2%。
23.实施例3
24.与实施例1中的步骤类似,所不同的是:1)球磨过程的真空度改为2.5kpa;2)烧结温度改为1350℃,烧结体中laves相体积分数为37%,室温强度为2168mpa,断裂前无任何塑性,呈现提前断裂状态;3)热处理降温速度改为60℃/min。处理后难熔高熵合金laves相体积分数降至22%,屈服强度提升至~3200mpa,硬度为10.7gpa,室温塑性为1.0%。
25.实施例4
26.与实施例1中的步骤类似,所不同的是:1)cr、mo、nb、w、ti金属粉末的比例改为1.5:1:1:1:1;2)烧结体中laves相体积分数为36%,室温强度为2692mpa,断裂前无任何塑性,呈现提前断裂状态。3)热处理温度改为1700℃,保温时间改为30min,热处理降温速度设置改为60℃/min。处理后难熔高熵合金laves相体积分数降至19%,屈服强度提升至~3700mpa,硬度为9.8gpa,室温塑性为1.7%。
27.前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。