一种在不锈钢或镍基合金钢制成的构件表面上产生一增强氧化物涂层的方法

文档序号:3399000阅读:386来源:国知局

专利名称::一种在不锈钢或镍基合金钢制成的构件表面上产生一增强氧化物涂层的方法
技术领域
:本发明背景本发明涉及一种在某些金属表面产生一种氧化物涂层的方法,其中该氧化物涂层具有很高的抗腐蚀性和抗离子浸出性。更具体地说,本发明涉及一种在奥氏体不锈钢或镍基合金钢表面产生一种保护性薄膜的方法。该氧化物薄膜具有抗腐蚀性和抗分子从钢中浸出进入与金属相接触的物质中。奥氏体不锈钢和镍基合金钢通常用于管材、容器和在生产工艺中对被加工物要严格考虑其纯净性的设备中。这样的钢通常也用于有强腐蚀溶剂或其它腐蚀物质存在的工艺中。许多这样的工艺是在高温下进行的。存在很纯的物质、强溶剂、或腐蚀性物质,特别是在高温下,使得防止钢的腐蚀和/或控制钢中各种杂质成分的浸蚀是非常困难的。例如包括在化工、食品、制药和半导体制造工艺中,防腐、控制浸蚀或这两者都必须严格考虑。用于此类工艺的构件通常被抛光以除去在工艺过程中离子浸出进入材料中或可能给腐蚀提供开始点的小表面突出部。在奥氏体不锈钢和镍基合金钢的表面自然形成的氧化物薄膜是不适应于许多防腐蚀或阻止离子从钢中浸出到与之接触的材料中,特别是当构件是不规则形状或含有焊点的情况下,更是如此。在奥氏体不锈钢和镍基合金钢的表面自然形成的氧化物薄膜既含有铁和铁的氧化物也含有铬和铬的氧化物。那些含有铬/铁高比率的氧化物薄膜比那些含有铬/铁低比率的氧化物薄膜具有更好的抗离子浸出性。现有增强氧化物薄膜的方法不能在奥氏体不锈钢和镍基合金钢构件上确定地产生具有可接受性能的或在恶劣应用中具有持久性的氧化物薄膜。特别是当现有方法应用在表面具有不规则形状如有凹的尖角和那些通过焊接形成的构件上时,更说明了这一点。本发明概述根据本发明,在奥氏体不锈钢和镍基合金钢上产生氧化物薄膜的现有方法的缺点和通过这些方法所产生的氧化物薄膜的不适应性已经被克服。所产生的氧化物薄膜在含有铬氧化物和铬氢氧化物中具有高含量的铬。由于氧化物薄膜具有高含量的铬,因此其具有高的抗腐蚀性和抗离子浸出性。本发明提出了一种在由奥氏体不锈钢和镍基合金钢制成的构件表面产生氧化物涂层的方法。构件的表面具有自然形成的氧化物薄膜。通过至少包括两个步骤的工艺来增强自然形成的氧化物。在第一步骤中,在第一时间段中的循环干燥空气中构件被加热到大约300℃。在第二步骤中,在第二时间段中在高压的静止干燥空气中构件被加热到比第一时间段中更高的温度。通过氧化处理使增强氧化物涂层的外层被除去,从而使具有高比率的铬/铁氧化物涂层能暴露在不锈钢的表面。据此,本发明的目的是要提供一种在奥氏体不锈钢和镍基合金钢的表面产生一种氧化物涂层的方法,该氧化物涂层比已知方法所产生的薄膜具有更有效地阻止离子浸出到与之接触的材料中去。本发明的另一个目的是要提供一种在奥氏体不锈钢和镍基合金钢的表面产生一种氧化物涂层的方法,该氧化物涂层比已知方法所产生的薄膜具有更好的抗腐蚀性。本发明还有另一个目的就是要提供一种在奥氏体不锈钢和镍基合金钢的表面产生一种氧化物涂层的方法,从而在不规则表面上产生氧化物薄膜,其具有能有效地阻止离子浸出到与之接触的材料中去。本发明还有一个目的是要提供一种在通过焊接而成的奥氏体不锈钢和镍基合金钢表面产生氧化物薄膜的方法。本发明的这些和其它目的以及优点,还有本发明的有关优选实施方案,通过下面的叙述和附图将会有更全面的了解。附图简要说明图1是用以说明本发明方法的一个实际使用的实施方案的工艺流程图。图2是奥氏体不锈钢基体金属和在其表面自然形成的氧化物薄膜的横截面示意图。图3是图2的不锈钢和氧化物薄膜表面经过电解抛光后的横截面示意图。图4是图3的不锈钢和氧化物薄膜经过第一增强步骤后的横截面示意图。图5是图4的不锈钢和氧化物薄膜经过本发明的氧化处理后的横截面示意图。图6是试样经过暴露在去离子水中后微量金属含量的示意图。图7是试样经过暴露在溶剂中后微量金属含量的示意图。图8是试样经过暴露在溶剂中后微量金属含量的示意图。本发明的详细描述根据本发明的一个实施方案通过图1的流程图所描述的是,在奥氏体不锈钢和镍基合金钢上产生一种增强氧化物涂层方法的一般步骤。这些步骤优选应用在通过现有的制造工艺而生产的由奥氏体不锈钢或镍基合金钢组成的所希望尺寸和形状的构件上。如图2所示是由奥氏体不锈钢所形成的构件的横截面示意图。如图2所示,通常所示为10的构件是由被外露生成自然氧化物层20所覆盖的基体金属层10所组成。基体金属层10所具有的化学成分与奥氏体不锈钢相同。在制造构件10后在奥氏体不锈钢表面自然地形成氧化物薄膜20。自然形成的氧化物薄膜20的表面是不规则的,并且在薄膜中存在的物质也是随意分布的。通过参考图1,对构件10首先进行电解抛光步骤25。在这一步骤中,可以通过任何已知的方法对构件进行电解抛光使氧化物薄膜20的表面光滑。图3示意性地说明了经过电解抛光后的不锈钢和图2的薄膜。如图3所示,电解抛光步骤25抛平了在氧化层20中所存在的显微裂缝30。这样的显微裂缝30通常在构件10的冷加工中产生。在图1的步骤35中,构件表面的所有污染物都被除去而很干净。根据清洗步骤35的所示方案,清洗首先优选在搅拌的酸浴液中进行,如在10%浓度的柠檬酸中进行。优选构件10在这一工序中进行大约30分钟。然后从浴液中取出构件10,通过喷淋去离子水使构件上的酸被中和并从构件上除去。然后通过喷吹压缩空气使裂缝处和隐蔽处的水除去。然后用去离子水擦洗以除去构件上的水迹并且然后用酒精擦洗。假如在这些步骤中表面还残留有任何污染物,从开始的电解抛光步骤就要重复进行。确定表面的污染物可以使用许多不同方法中的任何一种。例如,可以通过测量输入的清洗液流的电阻率与输出液流的电阻率进行比较而测出表面污染物。当测量值完全相等时,可以认为表面污染物已经被除去。类似地,根据比较输入液体和输出液体的比重也可以进行同样的测量。如上所述,当表面污染物已经被除去后,然后可以通过喷淋去离子水除去残留的酒精。然后将构件10浸泡在15~18兆欧的循环去离子水中大约8~12小时。所需浸泡的时间根据构件表面的复杂程度和不规则性而定。构件具有越不规则的表面需要浸泡的时间就越长。然后将构件10从循环液中取出并使用压缩空气喷吹使裂缝处和隐蔽处的水除去。然后再使用去离子水将水迹除去。在清洗步骤35之后,构件10经过一个或多个工序使表面氧化层20增强。根据该工艺的一个实施方案,进行了两个高温氧化增强步骤。这些步骤如图1所示的步骤40和45。优选在实施步骤40中,将构件10放置在加热的烘箱中,例如加热到250~300℃。通过通入干净干燥的空气将烘箱里空气中的水分除去,通入的流量根据烘箱的容积或体积的立方英尺来确定。例如,假如烘箱的容积为50立方英尺,那么流量基本上应设定为每小时50立方英尺。在公开的实施方案中,该流量是用于抽空或净化周围空气并在工艺开始时将其输入烘箱中的。干净干燥的空气相对于空气的露点不高于约100华氏度。在经过预定的时间后,例如1小时停止干净干燥空气循环并将构件10进行图1所示步骤45的氧化层增强。在步骤45中,将烘箱的温度升高到高于步骤40的温度。在优选实施方案中,烘箱的温度增加到例如约425℃。已经发现在温度为425℃时,可以避免焊接不锈钢构件中焊接处热影响区中铬的损失。在烘箱内的净化干燥空气的压力优选保持在1.5英寸水柱左右。烘箱里的构件在这样的温度和压力下停留预定的时间,例如大约2小时。然后将烘箱和构件10冷却。图4示出了在进行了氧化层增强步骤后构件10的氧化层的组成。如其所示,氧化层20一般包括含有高铁含量和低铬含量的外层区域60和含有高铬含量的内层区域65。即使在含有裂缝和焊点的构件那些区域通过这种双增强工艺,所获得的氧化层也得以增强。但是当构件在干燥空气中加热时,从构件制造中在奥氏体不锈钢或镍基合金钢表面自然形成的氧化物薄膜20会变厚。除了氧化膜变厚之外,氧化物薄膜中的铁和铁的氧化物在薄膜表面外层附近积累而形成层60,从而使薄膜出现淡金色。与连接薄膜外表层的薄膜60的那部分相比,薄膜层65含有更多的铬及更高的铬和铬的氧化物对铁和铁的氧化物的比率。在构件冷却后,对其进行图1的步骤70的氧化处理。氧化处理是将含有积累铁的氧化物薄膜20的外层部分60除去。根据氧化处理的实施方案,将构件10浸渍在高温的氧化剂循环浴液中。例如,通常可以使用温度为38~43℃的10%浓度的磷酸(H3PO4)。已经发现非常有效的氧化剂还包括50ppm的氯;硝酸;H2O2;高锰酸钾;和盐酸。优选构件10在循环浴液中停留直到不再看见构件表面出现淡金色为止。图5示意性说明了图4所示的薄膜进行氧化处理后的结果。如图所示,现在氧化物层20主要含有含铬层65。这种含铬层给构件15提供了所需要的防护。然后从氧化浴液中取出构件并对其进行图1步骤80的清洗。在清洗步骤80中,用于氧化处理的物质被中和并通过喷淋去离子水使其从构件上除去。然后可以使用压缩空气喷吹除去裂缝和隐蔽处的水。然后使用去离子水擦拭以除去水迹。在三个条件下,对由这种方法产生的薄膜对奥氏体不锈钢的防腐蚀和防浸出的有效性进行了试验。根据本发明通过电解抛光制备了316L不锈钢的试样和其它的试样。试样是从316L不锈钢板剪切而来的并且其尺寸为2′×0.750′×0.060′。第一个试验是将通过每一种方法制备的试样浸渍在温度保持为80℃的18兆欧去离子水中168小时。对浸渍了每一个试样的水进行分析以确定从试样上释放的微量金属。在用于试验每一个试样的水中所确定的铬、铁、镍和锰的含量(单位为十亿分之一)如下所示。这些结果通过图6的棒形图来加以描述,其中90所表示的每一个棒形是未处理构件的微量金属含量,95所表示的每一个棒形是根据前述的方法处理过的构件的微量金属含量。在图7和8中也使用了这样的表示。第二个试验是将通过每一种方法制备的试样浸渍在温度保持为80℃的由Ashland化学公司所提供的注册商标为ACT935的溶剂中168小时。这种溶剂被称为是剥离剂并在半导体晶片生产中用于去除正光敏剂层。对浸渍了每一个试样的溶剂进行分析以确定从试样上溶解下来的微量金属。在用于试验每一个试样的水中所确定的铬、铁、镍和锰的含量(单位为十亿分之一)如下所示。这些结果通过图7的棒形图来加以描述。第三个试验是将通过每一种方法制备的试样浸渍在温度保持为95℃的由Ashland化学公司所提供的注册商标为ACT690C的溶剂中168小时。这种溶剂被称为是剥离剂并在半导体晶片生产中用于去除聚合物蚀刻的残余物。对浸渍了每一个试样的溶剂进行分析以确定从试样上溶解下来的微量金属。在用于试验每一个试样的水中所确定的铬、铁、镍和锰的含量(单位为十亿分之一)如下所示。<tablesid="table3"num="003"><table>电解抛光试样根据本发明制备的试样铬3519626铁12251670镍170188锰3671测定不出</table></tables>这些结果通过图7的棒形图来加以描述。这些试验说明了本发明用于产生薄膜的有效性,该薄膜在各种应用中对在奥氏体不锈钢或镍基合金钢这样的钢与所接触的溶液之间提供了更显著有效的保护。只要不脱离其基本技术对前面的方法可以作许多修改。尽管本发明参考了一个或更多的示意性的实施方案进行了非常详细的叙述,该行业的那些技术人员将会意识到,只要不脱离下面所附的本发明的权利要求书所描述的范围和实质可以对其进行改变。权利要求1.一种在由奥氏体不锈钢或镍基合金钢制成的构件表面产生一种氧化物涂层的方法,在该构件表面含有自然形成的氧化物薄膜,该方法包括下述步骤自然形成的氧化物薄膜通过下面的步骤增强,在第一时间段内在循环的干燥空气中将表面加热到大约300℃;在第二时间段内于高压下在静止的干燥空气中将表面加热到比第一阶段更高的温度;和使用氧化处理将增强的氧化涂层的外表部分去除,从而使具有高比率的铬/铁的氧化涂层暴露在不锈钢的表面。2.权利要求1的方法中,其中第一时间段大约为1小时。3.权利要求1的方法中,其中第二时间段中的温度大约为425℃。4.权利要求2的方法中,其中第二时间段中的温度大约为425℃。5.权利要求1的方法中,其中第二时间段大约为2小时。6.权利要求2的方法中,其中第二时间段大约为2小时。7.权利要求3的方法中,其中第二时间段大约为2小时。8.权利要求4的方法中,其中第二时间段大约为2小时。9.权利要求1的方法中,其中的高压大约为1.5英寸水柱。10.权利要求3的方法中,其中的高压大约为1.5英寸水柱。11.权利要求5的方法中,其中的高压大约为1.5英寸水柱。12.权利要求7的方法中,其中的高压大约为1.5英寸水柱。13.权利要求1的方法中,其中的氧化处理是将表面浸泡在大约10%的磷酸溶液中。14.权利要求3的方法中,其中的氧化处理是将表面浸泡在大约10%的磷酸溶液中。15.权利要求7的方法中,其中的氧化处理是将表面浸泡在大约10%的磷酸溶液中。16.权利要求16的方法中,其中的氧化处理是将表面浸泡在大约10%的磷酸溶液中。全文摘要提出了一种在由奥氏体不锈钢或镍基合金钢制成的构件表面产生一种氧化物涂层的方法。该构件表面有自然形成的氧化物薄膜。该薄膜通过至少两个步骤的工艺增强。在第一个步骤中,第一时间段内在循环的干燥空气中将构件加热到大约300℃。在第二个步骤中,第二时间段内于高压下在静止的干燥空气中将构件加热到比第一阶段更高的温度。用氧化处理将增强的氧化涂层外表面部分去除,从而使具有高比率的铬/铁的氧化涂层暴露在不锈钢的表面。文档编号C23C22/05GK1295630SQ99804739公开日2001年5月16日申请日期1999年4月7日优先权日1998年4月7日发明者W·华莱特·雷蒙特,H·吐西尔·阿瑟申请人:塞米图尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1