用于冷却放热反应区的方法和反应器单元的制作方法

文档序号:3431627阅读:209来源:国知局
专利名称:用于冷却放热反应区的方法和反应器单元的制作方法
技术领域
本发明目的在于用于冷却放热反应区的方法和反应器单元。特别地,该方法对于冷却具有如水煤气变换反应和/或优先一氧化碳氧化反应的放热区是有用的。
背景技术
水煤气变换、蒸汽和自热重整反应如下述反应式1-3所示(1)(2)(3)反应(1)所示水煤气变换反应(简称变换反应),是放热平衡反应,只要该气体能与充分活性的变换催化剂接触,较低温度能提高向氢的转化。蒸汽重整反应(steam reforming reaction)(2)是吸热平衡反应,因此需要热量以提高烃(此处以甲烷为例)转化为氢。因此,控制反应温度对于使该烃和一氧化碳最大转化为氢,是非常重要的因素。在自热重整中,烃原料的燃烧是通过燃烧器燃烧区的火焰反应采用亚化学计量数量的氧进行的,如放热反应(3)所示。
其它有关反应是一氧化碳与氧的放热优先氧化反应(Prox)和氢转化为水的竞争氧化反应(4)(5)反应(5)消耗通常需要的产物氢,同时它能与反应(4)竞争可利用的氧,因此它是不受欢迎的反应。
美国专利申请US6375924公开了一种变换方法,其温度控制部分地是通过采用水喷雾冷却反应气体而实现的。来自重整器的排出气体,在进入反应器的高温变换区之前,在第一喷雾冷却区被喷雾冷却,以提供一种排出水混合物。该高温变换流出物在进入反应器低温变换区之前,流到第二水喷雾冷却区,产生一种水饱和的氢产物物流。
欧洲专利申请EP0985635公开了一种包括重整器和变换反应器的制氢装置。水在第一汽化器中汽化,重整器的烃原料被输送到第一汽化器,在该处,该原料与水蒸气进行混合。使这种混合物流到该重整器。重整后气体被输送到第二汽化器,在该处,它与业已汽化为水蒸气的水进行混合。这种混合物被输送到变换反应器。控制被汽化的水数量,从而导致催化剂温度的控制。
美国专利申请US20030223925(引入此处以供参考),公开了一种恒温变换方法,通过该方法,一种含一氧化碳的原料气被引入到变换反应器中,在该变换反应器中通过采用液体冷却剂冷却反应器管、接着使形成的氢经过氢选择膜流到透过区而在基本恒温条件下进行变换反应。变换反应可被降膜反应器中的沸水冷却,该降膜用来在进行该变换反应之前增湿干燥的原料气。
美国专利US2850360公开了一种通过间接热交换以冷却放热反应的装置。该装置包括一个管束壳式换热器。气态烯烃在该管中以放热反应与硫酸进行反应。得到的产物与水进行混合,部分水解产物被转移到反应器的壳端,与反应物进行间接热交换。
本发明一个目的是提供一种用于冷却放热反应如变换反应和/或一氧化碳优先氧化反应的改善方法。
本发明的又一个目的是提供一种适合用作燃料电池的燃料处理系统的方法和反应器单元。

发明内容
按照上面所述,本发明涉及用于冷却放热反应区的方法,是通过下述步骤实现的引入水流和含烃物流到延伸穿过具有固体催化剂的催化固定床的催化放热反应区的大量增湿管中,引入一种工艺物流到用于一个或多个催化放热反应的反应区,使该水流以降膜方式沿着该增湿管的内圆周流过,用该增湿管内和该放热反应器进行间接热交换的水增湿该含烃物流,从该反应区取出该放热反应的冷却反应产物,从该增湿管中取出加热过的、增湿的含烃物流,和转移该加热过的、增湿的含烃工艺物流用于进一步处理。
本发明还涉及用于实施该冷却方法的反应器单元,该单元在反应器壳中包括一个催化放热反应区,该反应器具有一个含烃物流入口,和一个水流入口,每个入口都设置在该催化放热反应区的上游,该催化放热反应区具有一个工艺物流的入口和一个该工艺物流反应产物的出口,和包括一个具有固体催化剂的催化固定床和用于增湿该含烃物流的大量增湿管,该增湿管延伸穿过整个放热反应区,该增湿管在任一端都是敞开的且适合用来沿着它们的内圆周产生水的降膜,以便通过与该反应区的间接热接触交换热量,该反应器在该反应区下游具有一个出口。
在本发明方法中,含烃物流和水流进入到具有催化反应区的反应器中,这两路物流向下流过大量管,在该处,该含烃物流被水增湿。这些管延伸到具有放热反应区的催化反应区,通过热交换为该增湿工艺提供热量。从该反应区取出该放热反应的冷却反应产物,用于进一步处理或收集,加热过的、增湿的含烃工艺物流也被转移用于进一步处理。


图1是图示说明带有该放热反应区的反应器单元的示意图。
图2是图示说明与具有吸热反应区的反应器串联的带有该放热反应区的反应器单元的流程图。
图3是图示说明与具有吸热反应区的反应器一体化的带有该放热反应区的反应器单元的示意图。
具体实施例方式
具有蒸汽重整器和变换反应器的一些处理装置,会输出作为副产物的水蒸气。经常地,对于输出的水蒸气质量存在着要求。该水蒸气通过工艺冷凝物的蒸发而产生,它是没有被反应(1)和(2)使用的未反应工艺水蒸气以及补充水。由于在工艺冷凝物中副产物的正常发生,经常需要投资于用于从该水蒸气中分离出该副产物的工艺冷凝物汽提塔以及原料/流出物热交换器和泵。
该水蒸气典型地是由水预热器、废热锅炉和汽包的系统产生。补充水和工艺冷凝物在被送到该汽包之前被预热。自该汽包的水流过废热锅炉,并在部分蒸发的情况下返回到该汽包。将该水蒸气与该水分离出来,并离开该汽包。
本发明所述方法和装置,结合了上述装置的许多单元操作,降低了投资成本,改善了工艺经济效益。
借助于图1,本发明所述方法将得到详细图示说明。含烃物流和水流通过它们各自的入口2和3,进入到反应器1中。该含烃物流例如含有天然气(主要是甲烷)或更高级的烃。更高级的烃定义为高于甲烷的烃,即C2+。该含烃物流可在它进入反应器1之前,通过使之经过加氢脱硫步骤而实现脱硫。
这两路物流进入延伸穿过放热反应区的大量增湿管4中。该水流以降膜方式沿着该增湿管4的内圆周流过。当该混合物向下流过该增湿管4时,水被汽化,经此形成的水蒸气增湿该含烃物流。用于此汽化的热量由该管4外部的反应区5中发生的放热反应提供,该放热反应区同时被冷却。如果需要,该含烃物流可被水蒸气完全饱和。
反应区5可为具有固体催化剂的催化固定床。该固体催化剂包括催化剂小球,具有如变换催化剂的催化层和/或直接涂敷在该管外部的催化层的呈结构元件形式的催化元件。结构元件覆盖催化剂系统,其中,催化剂层固定在其它材料的表面上,该其它材料充当负载结构,为该系统提供强度。该其它材料可以是金属或陶瓷材料。实例有整块材料、交叉波纹结构、高表面积结构元件、泡沫材料、平板、连接到该管壁的结构或其它合适形状。
用于催化释放热量的化学反应的催化剂在反应区5中使用。这种化学反应,例如,可能会是其中使用了合适变换催化剂的反应式(1)的放热水煤气变换反应。其它适用于本发明所述方法的合适放热反应是甲醇合成反应和甲醛合成反应,它们两个都是放热反应。又一个可适用于本发明所述方法的反应是一氧化碳的放热优先氧化反应,即反应(4)。
一种工艺物流通过入口6进入反应区5中。这种工艺物流,例如,可为重整气,它必须要在反应区5中进行进一步变换反应。该放热反应通过将产生的热量用于汽化增湿管4中的水而被冷却。在结束反应后,自反应区5的产物物流通过出口7流出该反应器。
在该含烃物流已经被增湿之后,它离开增湿管4,并接着通过出口8离开反应器1。如果需要,该增湿的含烃物流可流过除雾器9,用于在物流离开反应器1之前凝结存在于该物流中所有水滴。在离开反应器1之后,该增湿的含烃物流接着被转移用于进一步处理。
该增湿的含烃物流可通过使之进行绝热或非绝热蒸汽重整反应和/或自热重整反应或非催化汽化而被进一步处理。
对于该增湿含烃物流被重整的情形,重整区可以是吸热或放热的重整区,例如,蒸汽重整区或自热重整区。如果该含烃物流含有更高级的烃,则该重整区可为预重整区,在该处,该更高级烃不可逆地被转化为甲烷、一氧化碳和二氧化碳。接着,该预重整步骤之后,例如,是蒸汽重整步骤。
在本发明实施方式中,在含烃物流增湿之后,所有剩余的水都离开增湿管5,并落入到位于反应器1底部的水池10中。水池10充当汽包,它可连接到废热锅炉上。该废热锅炉例如可为烟道气锅炉(示于图3,参考标记12),或者它可作为kettle锅炉进行操作。由该锅炉产生的水蒸气可加入到该增湿含烃物流中。反应器1水池底部有一个出口11,用于取出水,如果需要,可用于循环水到入口3。
以上所述和图1中图示的实施方式,具有替代常规方法中下述装置的优点变换反应器、废热锅炉、工艺冷凝汽提塔、原料/流出物交换器和基本数量的连接管道和结构用钢材。此外,剩余的汽包和相关蒸气系统在尺寸上得到极大减小。在本发明一种实施方式中,放热反应区5被分成两个区域一个配有高温(HT)变换催化剂的区域和一个配有低温(LT)变换催化剂的区域,其中该LT催化剂放置在该HT催化剂的下游。
借助于图1,在本发明的又一种实施方式中,放热反应区5被分成一个变换催化剂区和位于该变换催化剂区下游的一个Prox催化剂区。一路含氧物流被供入到该Prox催化剂区。在一种实施方式中,该反应区被分成三个催化剂区,它们分别配有HT变换催化剂、在该HT催化剂下游的LT变换催化剂、和在该LT变换催化剂下游的Prox催化剂。这是有利的,因为来自该LT变换的流出物温度等于该Prox区入口处需要的温度,而且由增湿该烃提供的冷却能保证反应(4)对于反应(5)有最佳的选择性。通过反应区5的出口7离开位于该LT变换催化剂下游的该Prox区的流出物,可被引入燃料电池,该流出物为阳极反应提供氢。空气或氧气由另一用于阴极反应的来源提供。
图2图示说明了本发明的一种实施方式,其中,放热反应区串联连接一个吸热反应区,该吸热反应区可以是重整区,在该处如甲烷之类的烃按照反应式(2)进行重整。含烃物流5和水流6进入反应器1。这两路物流进入延伸穿过放热反应区8的大量增湿管7。当该烃水蒸气混合物向下流过增湿管7时,水被汽化,经此形成的水蒸气增湿该含烃物流,如较早的对图1说明中所述。
该已增湿的含烃物流9离开具有反应区8的反应器1,进入到重整反应区。在此实例中,该重整区是吸热的,重整器通过使用燃烧的、管状重整器2图示表示。对流重整器也可用来替代管状重整器。增湿的含烃物流9,任选地可在重整之前,在热交换器3中与来自管状重整器2的烟道气10进行热交换。在管状重整器2中,甲烷经重整产生一氧化碳和氢,这些产物11接着通过被转移到反应器1的反应区8而实现变换。
水12任选地可自反应器1的该水池中被抽出,并与来自管状重整器2的烟道气10进一步进行热交换4。这样,烟道气10就能进行两次热交换步骤,其中,第一步骤是与增湿含烃物流9进行的热交换3,第二步骤是与水12进行的热交换4。此外,烟道气10的热含量还可用于其它目的,例如在脱硫反应之前加热该含烃物流。
在本发明的又一种实施方式中,该放热反应区是串联连接一个放热的自热重整区,在该处,该烃化合物按照反应式(3)被氧化。该增湿含烃物流离开具有该放热反应区的反应器1,并进入自热重整器。该增湿含烃物流,在进入该重整器之前,任选地可被一个热源加热,以获得该自热重整器需要的入口温度。任选地,该物流在进入该自热重整器之前,可被预重整和任选地被再加热。具有氧化性化合物的其它物流也进入该自热重整器。这种氧化性化合物通常是空气或氧气。离开该自热重整器的重整流出物接着被转移到反应器1的放热反应区8之中。在其转移到反应区8的过程中,如果需要,它可通过使用废热锅炉而被冷却。反应器1的该水池可用作汽包。水任选地可从反应器1的该水池中被取出,并被工艺烟道气进一步加热,而烟道气则被冷却。
图3图示说明了本发明的又一种实施方式,其中,具有该放热反应区的反应器1与一个具有吸热反应区的反应器是一体化的。为了方便,图1中所用的参考标记也适用于图3。该增湿含烃物流通过出口8离开反应器1,并进入该放热反应区,其可为重整区。在这种情形中,该重整区通过使用对流重整器管13如称作HTCR型号(源自Haldor Topse A/S)而得到图示说明。
通过来自燃烧室的烟道气,为该重整管13供给热量。该重整管通过与烟道气进行的热交换而被加热,该烟道气经由入口14进入并在包围重整管13的套管15内沿该管的管壳侧向上流动。在离开套管15之后,该烟道气在该变换区和重整管13之间,与正被传送到重整管13的该增湿含烃物流逆向地向下流动。该烟道气热含量的一部分用来加热该物流。随后,该烟道气进入烟道气废热锅炉12,然后通过出口18离开该一体化反应器。
该增湿含烃物流通过出口8离开该增湿作用区,并朝着该重整管入口向上流动,同时与向下流动的该烟道气进行热交换。这样,该增湿含烃物流就达到重整管13的入口温度。该加热过的物流进入重整管13,在该处它被重整。该重整流出物进入位于该重整管底部的插入管(bayonet tube)16。插入管16径向地连接到具有反应区5的变换部分。
该重整流出物之后进入反应区5,在该处,它按照反应式(1)被变换为氢和二氧化碳。它还同时由于在增湿管4中发生水的汽化(如前所述)引起的热量除去而被冷却。该流出产物物流接着通过出口7从该反应区被取出,用于进一步处理或收集。出口7位于该反应区中心,并在其较低区域配置有孔眼17,通过这些孔眼,该流出产物物流得到收集,并随后流出反应器1。
采用图3所示的一体反应器单元也可实现在结构钢和管道方面的其它节约。在本发明的反应器单元中,热量是以不输出水蒸气的方式进行一体化的,这样该单元就可替代变换反应器、废热锅炉和汽包,相关的水蒸气系统可全部去除。
本发明方法的其它优点是能获得变换反应的低平衡温度。平衡温度从高温变换反应器的操作温度,即约450℃、或从中温变换反应器的操作温度,即约330℃降低到约225℃。较低的平衡温度导致更大的氢收率,因为反应(1)在低温时有利于氢产生。这样,本发明所述方法和装置能提高具有特定蒸汽重整器或自热重整器装置的氢产量。这能降低对于给定产量所需要的投资,从而改善工艺经济性。
本发明所述方法和反应器单元的另一个优点,是它们能用于小规模的氢生产。对于需要紧致性和结合的热电装置的小规模民用或商业应用来说,这是特别有用的。早先所述的实施方式特别适用于质子交换膜燃料电池的燃料处理系统。
权利要求
1.用于冷却放热反应区的方法,是通过下述步骤实现的引入水流和含烃物流到延伸穿过具有固体催化剂的催化固定床的催化放热反应区的大量增湿管中,引入一种工艺物流到用于一个或多个催化放热反应的反应区,使水流以降膜方式沿着该增湿管的内圆周流过,用该增湿管内与放热反应区间接热交换的水增湿该含烃物流,从该反应区取出该放热反应的冷却反应产物,从该增湿管中取出加热过的、增湿的含烃物流,和转移该加热过的、增湿的含烃工艺物流用于进一步处理。
2.权利要求1所述方法,其中,该含烃物流被水或被在冷却该反应区放热反应过程中在该增湿管内形成的水蒸气所饱和。
3.权利要求1或2所述方法,其中,该放热反应是水煤气变换反应和/或一氧化碳的优先氧化反应。
4.权利要求1-3任一所述方法,其中,该进一步处理是绝热蒸汽或非绝热蒸汽重整反应和/或自热重整反应或非催化汽化。
5.用于实施权利要求1所述冷却方法的反应器单元,该单元在反应器壳中包括一个催化放热反应区,该反应器具有一个含烃物流入口,和一个水流入口,每个入口都设置在该催化放热反应区的上游,该催化放热反应区具有一个工艺物流的入口和一个该工艺物流的反应产物的出口,和包括一个具有固体催化剂的催化固定床和大量用于增湿该含烃物流的增湿管,该增湿管延伸穿过整个放热反应区,该增湿管在任一端都是敞开的并用来沿着它们的内圆周产生水的降膜,以便通过与该反应区的间接热接触交换热量,该反应器在该反应区下游具有一个出口。
6.权利要求5所述反应器单元,包括与反应器单元串联连接的绝热或非绝热蒸汽重整反应器和/或自热重整反应器或非催化汽化装置。
7.权利要求5或6所述反应器单元,在反应器壳中还包括一个重整区,该重整区具有至少一个径向连接到反应区的催化重整管,该至少一个重整管具有一个用于接受来自反应区的增湿含烃物流的入口,和一个用于引导重整流出工艺物流到放热反应区入口的出口。
8.权利要求6或7所述反应器单元,在反应器壳中还包括一个位于反应区下游的烟道气废热锅炉,该烟道气废热锅炉具有将该锅炉连接到燃烧室的管道装置,为该至少一个重整管提供热量,该管道装置用来使得烟道气与该增湿含烃物流进行间接热交换。
9.权利要求5所述反应器单元,包括一个催化放热反应区,该催化放热反应区配置有水煤气变换催化剂和/或用于一氧化碳优先氧化反应的催化剂。
10.权利要求1-9所述方法和反应器单元在燃料电池的燃料处理系统中的用途。
全文摘要
用于冷却放热反应区的方法,是通过下述步骤实现的引入水流和含烃物流到延伸穿过具有固体催化剂的催化固定床的催化放热反应区的大量增湿管中,引入一种工艺物流到用于一个或多个催化放热反应的反应区,使该水流以降膜方式沿着该增湿管的内圆周流过,用增湿管内和放热反应区间接热交换的水增湿该含烃物流,从该反应区取出该放热反应的冷却反应产物,从该增湿管中取出加热过的、增湿的含烃物流,和转移该加热过的、增湿的含烃工艺物流用于进一步处理。
文档编号C01B3/58GK1683065SQ20051006009
公开日2005年10月19日 申请日期2005年3月1日 优先权日2004年3月1日
发明者T·罗斯特鲁普-尼尔森, J·B·汉森 申请人:赫多特普索化工设备公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1