具有UV诱发着色的玻璃的UV光褪色的制作方法

文档序号:19399366发布日期:2019-12-13 18:59阅读:472来源:国知局
具有UV诱发着色的玻璃的UV光褪色的制作方法

相关申请的交叉引用

本申请根据35u.s.c.§119的规定,要求2014年2月20日提交的美国临时申请序列第61/942302号的优先权,通过引用将该申请全文纳入本文。

领域

本文涉及光褪色,具体涉及具有uv诱发着色的玻璃的uv光褪色。



背景技术:

当经受高能uv辐射时,某些类型的玻璃在可见光波长易受到着色并降低透光度(即,较高的光学吸收)。具体来说,会提升约为500nm处的色心,其中,由于蓝波长光相对于红波长的吸收增加,玻璃发生粉色着色或色调。uv诱发的着色会发生在例如,当玻璃经受包括较高强度深紫外(duv)辐射作为主要加工媒介或者作为不同加工媒介的副产物的工艺时。例如,作为等离子体清洁工艺和喷溅沉积工艺中的副产物,存在显著量的高能duv辐射。

uv诱发的玻璃着色会是不利的,特别是在旨在将玻璃用于可见光波长(其中,在可见光波长范围需要显著相等透光)的应用中。消费者电子品中的此类例子包括使用透明玻璃片作为覆盖玻璃用于各种类型的显示器,其尺寸范围可以是1英寸或数英寸(例如,手机、智能手机等)至数英尺(例如,大屏幕电视机)。



技术实现要素:

本文的一个方面是对玻璃样品进行加工的方法。方法包括:用着色波长λc<300nm的着色uv辐射来照射玻璃样品,以形成具有粉色颜色的经着色的玻璃样品;以及用褪色波长λb的褪色uv辐射来照射经着色的玻璃样品,其中248nm≤λb≤365nm,以基本去除粉色颜色。

本文的另一个方面是对玻璃样品进行加工的方法。方法包括:用着色波长λc<300nm的着色uv辐射来照射玻璃样品,从而由于在玻璃样品中形成一定量的ti+3色心,来形成具有粉色颜色的经着色的玻璃样品;以及用褪色强度为ib且褪色波长为λb的褪色uv辐射来照射经着色的玻璃样品,其中248nm≤λb≤365nm,以及其中,褪色强度ib足以通过明显降低玻璃样品中的ti+3色心的量,来基本去除粉色颜色。

本文的另一个方面是对经着色的玻璃样品进行褪色的方法,所述经着色的玻璃样品由于形成了ti+3色心而具有粉色颜色。方法包括:用具有褪色波长λb的褪色uv辐射来照射经着色的玻璃样品,其中,248nm≤λb≤365nm;以及进行所述照射,持续时间为t,0.5小时≤t≤5小时,以基本去除粉色颜色。

在以下的详细描述中给出了本发明的其他特征和优点,其中的部分特征和优点对本领域技术人员而言是容易理解的,或通过实施文字描述和其权利要求书以及附图中所述实施方式而被认识。应理解,上面的一般性描述和下面的详细描述都仅仅是示例性的,用来提供理解权利要求书的性质和特点的总体评述或框架。

附图说明

所附附图提供了对本发明的进一步理解,附图被结合在本说明书中并构成说明书的一部分。附图说明了本发明的一个或多个实施方式,并与详细描述一起用来解释各种实施方式的原理和操作。因此,结合附图,通过以下详细描述会更好地理解本发明,图中:

图1是玻璃样品的放大图,其举例显示为玻璃片的形式;

图2是图1的玻璃样品的侧视图,其中,玻璃样品用着色uv辐射进行照射;

图3是侧视图,显示如图2所示通过用着色uv辐射照射玻璃样品形成得到的经着色的玻璃样品;

图4a是用褪色uv辐射进行毯式照射(blanketirradiate)以基本去除粉色颜色的经着色的玻璃样品的侧视图;

图4b类似于图4a,但是显示的是褪色uv辐射相对于经着色的玻璃样品进行扫描或者步阶的实施方式;

图5是玻璃样品在用图4a或图4b的方法经褪色uv辐射照射之后的侧视图,其中,已经基本去除了粉色颜色;

图6是由铝磷硅酸盐玻璃制造的玻璃样品的吸光率a(mm-1)与波长λ(nm)的关系图;以及

图7是由铝磷硅酸盐玻璃制造的经着色的示例性玻璃样品的吸光率a(mm-1)与褪色uv辐射的曝光时间t(小时)的关系图。

具体实施方式

下面详细描述本发明的各种实施方式,这些实施方式的例子在附图中示出。只要有可能,在所有附图中使用相同或类似的附图标记和符号来表示相同或类似的部分。附图不一定成比例,并且本领域技术人员会理解对附图做出简化以显示本发明的关键方面。

如下所附的权利要求书结合在该具体实施方式中并构成其部分。

本文所述的任何出版物或专利文献的全文内容通过参考结合于本文。

出于参考的缘故在某些附图中显示笛卡尔坐标,它们并不旨在限制方向或朝向。

根据专利审查程序手册(manualofpatentexaminingprocedures)(mpep),第608.02(ix)节用于表示颜色的荫形规定,在一些附图中显示的经着色的玻璃样品中的垂直荫形(verticalshading)用于表示颜色粉色(即,粉色颜色)。

元素e的术语“ppm/摩尔”表示e的氧化物的摩尔百万分之份数,以及在元素e是钛的情况下,氧化物是tio2。

图1是具有主体12的玻璃样品10的放大图。将玻璃样品10举例显示为片形式,其中,主体12包括大致平面和平行的上下表面14和16。用于玻璃样品10的示例性玻璃类型是铝磷酸盐玻璃,例如如美国专利第3,746,556号所示。另一种示例性玻璃类型是铝磷硅酸盐玻璃,例如如美国专利第7,323,426号所示。用于玻璃样品10的另一种示例性玻璃类型是碱性铝硅酸盐玻璃,例如如美国尚未授权的公开第2013/0122284号所示。在一个例子中,玻璃样品10包括钛,以及在另一个例子中,钛是错配物钛,即,作为污染物在玻璃主体12中以痕量存在。因此,在一个例子中,玻璃样品10可以由包含痕量钛的任意类型的玻璃制造。

图2是玻璃样品10的侧视图,其中,用(未示出的)来自着色uv辐射源的着色uv辐射20来照射玻璃样品。在一个例子中,着色uv辐射20的强度为ic,以及着色波长λc<300nm。在一个例子中,着色uv辐射20是形成用于加工玻璃样品10的主媒介的副产物。例如,在等离子体清洁过程中,用于清洁玻璃样品10的主媒介是等离子体,同时通过等离子体发射uv着色辐射20。类似地,在喷溅沉积过程中,用于将材料喷溅到玻璃样品10上的主媒介是原子和离子的能量束,而uv着色辐射20是原子和离子能量源的副产物。在另一个例子中着色uv辐射20的uv光子构成工艺的主媒介。此类工艺的例子包括光学检测、退火和去污染等。

图3显示在经受着色uv辐射20之后的玻璃样品10,其中,玻璃体12现在具有粉色着色或颜色。在下文中,将如此着色的玻璃样品10称作“经着色的玻璃样品10”。如下文更详细所述,且不希望受限于理论,相信通过着色uv辐射20所引起的玻璃主体12中的痕量钛的光还原导致在玻璃样品10中诱发粉色着色或颜色。

图4a类似于图2,显示用具有褪色强度ib和褪色波长λb的褪色uv辐射30进行毯式照射的经着色的玻璃样品10。在示例性实施方式中,褪色波长λb的范围是248nm≤λb≤365nm。褪色uv辐射30源自褪色uv辐射源32。在一个例子中,褪色uv辐射源32包括一种或多个光学组件(未示出),其作用是对褪色uv辐射30进行导向和/或成形,例如以形成基本准直的褪色uv辐射束。在一个例子中,褪色uv辐射源32是连续波(cw)源,而在另一个例子中,其是脉冲源。褪色uv辐射源可以包括:发射uv的激光、发射uv的发光二极管(led)、汞弧灯,以及这些源类型的组合。

图4b类似于图4a,显示褪色uv辐射30相对于经着色的玻璃样品10进行扫描或步阶的例子,如箭头34所示。在扫描方法中,褪色uv辐射30相对于经着色的玻璃样品10连续移动。在步阶方法中,褪色uv辐射30在一个位置停留一段曝光时间,然后移动到另一个位置。在扫描和步阶方法这两者中,褪色uv辐射30都可能需要对经着色的玻璃样品10的同一部分照射多次。虽然扫描和步阶曝光方法可能需要较长时间来明显减少或去除粉色颜色,但是褪色uv辐射30可以具有更高的强度ib,因为辐射束可以更为集中。如图4b所示的扫描和步阶曝光方法还可用于对经着色的玻璃样品10的一个或多个部分进行选择性曝光。

图5显示用褪色uv辐射30进行照射之后的经着色的玻璃样品10,从而使得从玻璃主体12基本去除了所有的粉色着色或颜色。

在一个示例性实施方式中,褪色uv辐射30可以具有较低强度ib,例如,低至5mw/cm2。在一个例子中,褪色uv辐射的强度ib的范围是5mw/cm2≤ib≤100mw/cm2。在另一个例子中,褪色uv辐射的强度ib的范围是10mw/cm2≤ib≤50mw/cm2。褪色uv辐射30的曝光时间t取决于强度ib,但是,在一个例子中,可以是0.5小时≤t≤5小时。在一些例子中,用褪色uv辐射30对部分或全部的经着色的玻璃样品10进行照射。

图6是由铝磷硅酸盐玻璃制造的玻璃样品10的吸光率a(mm-1)与波长λ(nm)的关系图,所述铝磷硅酸盐玻璃的组成(摩尔%)如下:sio2(58)、al2o3(16)、p2o5(6)、na2o(17)、mgo(3)。图6的附图显示c0至c4的5条曲线。与曲线c1至c4相关的数据是基于对于褪色uv辐射30的不同曝光时间获得的吸光率测量,其中,λb=254nm以及ib=5mw/cm2。曲线c1表示未用褪色uv辐射30照射的经着色的玻璃样品10,从而在可见光谱范围具有最高的总体吸光率a。曲线c2表示经着色的玻璃样品10经由褪色uv辐射30曝光持续t=2小时的曝光时间之后的吸光率。曲线c3表示经着色的玻璃样品10经由褪色uv辐射30曝光持续t=3小时的曝光时间之后的吸光率。曲线c4表示经着色的玻璃样品10经由褪色uv辐射30曝光持续t=3.5小时的曝光时间之后的吸光率。c1至c3的吸收曲线显示在λ=500nm处的明显吸收特征,这对应于蓝色可见光。蓝色可见光的吸收使得经着色的玻璃样品10其具有粉色着色。

图6还显示曲线c0(虚线),其对应于玻璃样品10在经着色和褪色之前的吸光率。注意到在该情况下,相比于其初始吸光率,褪色过程实际上是如何减少玻璃样品10的吸光率的。

着色机制

注意的是,不希望受限于理论,相信经着色的玻璃样品10的uv诱发的粉色着色以及后续的着色的褪色的机制归因于存在痕量钛。具体来说,相信将玻璃样品10中的ti+4光还原至ti+3导致蓝光吸收的增加,这引起了粉色着色或颜色。在一个例子中,痕量钛(例如,作为ti+4和ti+3)在玻璃样品10中以其正常透明状态存在的量约为20-100ppm/摩尔。当玻璃曝光于着色uv辐射20时,痕量ti+3增加到高至约10倍(例如,从1-2增加到10-20ppm/摩尔)。在采用电子顺磁共振(epr)的实验中,测得经着色的玻璃样品10中的ti+3浓度相对于原始(未着色)玻璃样品增加约10倍。

在一个例子中,在玻璃样品10中以其正常透明状态存在的痕量ti+3的量(t量)范围是20ppm/摩尔≤t≤100ppm/摩尔,而在另一个例子中,20ppm/摩尔≤t≤1000ppm/摩尔。当玻璃曝光于着色uv辐射20时,痕量ti+3增加到高至约10倍(例如,增加到200-1000ppm/摩尔)。在采用电子顺磁共振(epr)的实验中,测得经着色的玻璃样品10中的ti+3浓度为400ppm/摩尔,而原始(未着色)玻璃样品的ti+3浓度约为40ppm/摩尔。

进行着色实验来检查何种着色波长λc和着色强度ic会引起粉色着色。实验显示用波长范围为254-360nm以及处于10-20mw/cm2的强度水平的uv辐射来照射玻璃样品10没有引起玻璃样品中的着色。另一方面,对于用来自脉冲krf激光的着色波长λc=248nm的着色uv辐射对玻璃样品10进行10分钟的曝光的实验(脉冲频率为20hz以及平均功率为1.25w/cm2),引起上文所述的粉色着色或颜色的形成。

此外,对于用来自基于uv清洁器(即,购自加州欧文市的极光有限公司(jelightcompany,inc.,irvine,california)的型号7576系列)的着色uv辐射来对玻璃样品10进行16分钟曝光的着色实验,引起形成上文所述的粉色着色或颜色的形成。

除了上文所述的着色实验之外,发现对于经受基于等离子体清洁过程和基于等离子体沉积过程的玻璃样品10(其中,着色uv辐射λc<300nm是副产物),导致粉色着色或颜色。

还进行了褪色实验。褪色实验显示用波长范围为254-360nm以及ib强度水平为10-20mw/cm2的uv辐射可以获得经着色的玻璃样品10的褪色。如上文所注意到的,在示例性褪色uv辐射30中,强度ib的范围可以是5mw/cm2≤ib≤100mw/cm2

着色和褪色的不同波长范围的一种解释是,发生了双光子吸收过程,在经着色的玻璃样品10中产生ti+3色心。这意味着着色uv辐射30的强度和能量必须足以产生双光子吸收,从而将电子从价带激发到导带。然后电子被ti+4离子俘获以形成ti+3离子,其变成色心。ti+3离子具有高于导带的额外激发态。

在一个例子中,褪色过程涉及用褪色uv辐射30来照射经着色的玻璃样品10,通过基本去除在着色过程期间形成的ti+3色心,使得玻璃样品10返回至其初始吸光率。当形成ti+3离子的电子与俘获空穴重新结合以形成ti+4离子时,发生这种情况。激发态的带是宽的,这对应于可以发生褪色的宽的光谱区域。

为了进一步限定着色过程的着色波长λc的光谱范围,进行铝磷硅酸盐玻璃样品10的高能三倍yag曝光,尝试引起着色。曝光波长λ=355nm,这对应于能量e=3.5ev。没有观察到着色,这暗示了着色波长λc的范围低于355nm,例如300nm,这对应于4.13ev的e。

着色和褪色的简单模型

产生ti+3色心的速率的简单动力学等式如下:

dt/dt=k·i2c(t0‐t)‐q·[ib+ic]·t等式(1)

其中,t是ti+3色心的数量,ic是着色uv辐射20在着色波长λc的强度,ib是褪色uv辐射30在褪色波长λb的强度,t0是玻璃样品10中的ti的总浓度,以及k和q分别是着色速率常数和褪色速率常数。

虽然着色和褪色强度ic和ib会是宽光谱,但是出于简化,将它们表示为单波长的单个值。等式(1)没有考虑着色波长的任意竞争吸收,或者该吸收过程随时间的任何变化。

等式(1)的解如下:

t/t0=(c/a)·[1‐e‐aτ]等式(2)

其中,τ=ib·q·t,c=(k/q)(ic/ib)·ic,以及a=(k/q)(ic/ib)·ic+(ic/ib)+1。稳态值t/t0=c/a。通过假定ic>>ib可以简化等式(2),从而使得如下得到的等式(3)具有t/t0,其取决于着色速率常数k与褪色速率常数q和着色强度ic的比例。

t/t0=(k/q)ic/[(k/q)ic+1]等式(3)

由于使用双光子吸收来描述引起ti+3色心的着色过程,可以合理地假定其横截面远小于单光子事件的情况,从而k<<q。该假定使得项k·ic/q是小的,除非着色强度ic极高,而这是不可能的。因此,等式(3)的合理解假定ti+3浓度较小并且对于着色强度ic呈线性。这使得等式(3)退化成等式(4):

图7是对于示例性铝磷硅酸盐着色玻璃样品10(其具有与上文关于图6所述的玻璃样品相同的组成)用褪色uv辐射30,吸光率a(mm-1)与曝光时间t(单位,小时,h)的关系图。褪色uv辐射30的褪色波长λb=254以及强度ib=5mw/cm2。从图7可以通过数据的最佳拟合线来获得褪色速率常数q的估算,其是斜率/截距的形式y=mx+b=‐0.0135x+0.0473,“r平方”拟合r2=0.9409。从等式(1),图7的曲线的斜率m限定了参数a=ib·q·t。使用图7的数据来解q,得到q=0.0027cm2/mw-小时。

本文的方面包括对玻璃样品10进行加工的方法,以减少或基本消除uv诱发的着色。一种此类方法包括首先用着色波长λc<300nm的着色uv辐射20来照射玻璃样品10,以形成具有粉色颜色的经着色的玻璃样品。方法然后包括用褪色波长λb(其中,248nm≤λb≤365nm)的褪色uv辐射30来对经着色的玻璃样品10进行照射,以基本去除粉色颜色。

本文的另一个方面包括对玻璃样品10进行加工的方法,其中,方法包括用着色波长λc<300nm的着色uv辐射20来照射玻璃样品,经由在玻璃样品中形成一定量的ti+3色心,来形成具有粉色颜色的经着色的玻璃样品。方法然后包括用褪色强度ib且褪色波长λb(其中,248nm≤λb≤365nm)的褪色uv辐射30来照射经着色的玻璃样品10,其中,褪色强度ib足以通过明显减少玻璃样品中的ti+3色心的量来基本去除粉色颜色。

本文的另一个方面包括对经着色的玻璃样品进行褪色的方法,所述经着色的玻璃样品由于形成了ti+3色心而具有粉色颜色。方法包括用褪色波长λb(其中,248nm≤λb≤365nm)的褪色uv辐射30来对经着色的玻璃样品10进行照射。方法还包括进行所述照射,持续的曝光时间t范围是0.5小时≤t≤5小时,以基本去除粉色颜色。

用褪色uv辐射30进行照射可以是毯式照射、扫描照射或者步阶式照射。褪色uv辐射30可以是cw或者脉冲的。

对本领域的技术人员而言,很清楚可以在不偏离所附权利要求所限定的本发明的精神或范围下,对本文所述的本发明的优选实施方式进行各种修改。因此,本文覆盖了此类修改和变动,只要这些修改和变动在所附权利要求及其等同方案的范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1