一种利用草酸和铁载体DFOB溶解赤铁矿的方法与流程

文档序号:11398548阅读:2180来源:国知局
一种利用草酸和铁载体DFOB溶解赤铁矿的方法与流程

本发明涉及赤铁矿的溶解方法,尤其涉及一种利用草酸和铁载体dfob促进溶解赤铁矿的方法。



背景技术:

铁元素是生物正常生长、发育的必需元素。微生物和植物正常生长所需要的铁浓度分别为10-5~10-7m和10-4~10-9m。但在有氧的植物根际环境下铁主要以fe3+形式存在于难溶(表1)的含铁矿物中,如水铁矿、针铁矿及赤铁矿等,难以被生物利用。若要达到生物正常生长所需的铁的浓度,土壤的ph值需降到3左右,而在这种ph下生物几乎不能生存。研究发现,生物在长期的进化过程中具备了获取铁的机制,如微生物分泌的铁载体及植物根系分泌的小分子有机酸(草酸、柠檬酸、苹果酸等),在微生物及植物获取铁的过程中起到重要作用。

表1土壤中常见的铁氧化物的溶解

a:ks=(fe3+)/(h+)3(理想稀溶液及298.15k条件下);phzpc:电荷零点

铁载体是微生物在缺铁环境下分泌的一种低分子量(500-1000da)的螯合剂,可与含铁矿物中的fe3+形成稳定常数在1023-1052的可溶性螯合物,理论上可促进含铁矿物的溶解。植物分泌的小分子有机酸(如草酸、柠檬酸、苹果酸等)能与fe3+形成稳定常数为107~1011的配合物,也具有一定的促进含铁矿物溶解的潜力。然而,由于铁载体及小分子有机酸自身性质及环境因素(如土壤中ph)的限制使得铁载体及小分子有机酸不能充分发挥为生物提供铁营养的作用,主要表现在二者单剂施用时对含铁矿物的铁溶出速率贡献有限。



技术实现要素:

本发明的目的是提供一种利用草酸和铁载体dfob促进溶解赤铁矿方法。

本发明的目的通过以下技术方案来实现:一种利用草酸和铁载体dfob溶解赤铁矿的方法,在背景电解质溶液中添加铁载体dfob和草酸构成反应体系液相,其中铁载体dfob和草酸的摩尔浓度比为1:1,加入赤铁矿至其浓度为2.0g·l-1,调节反应体系ph为3-9,避光条件下,于30℃震荡反应120-240h。

铁载体因空间位阻或电荷相斥作用(如铁载体dfob的末端含有一个氨基,pka=8.38,在ph<8时带正电)使其在赤铁矿上的吸附能力弱,从而对赤铁矿的溶解作用较弱;在ph较高的环境中(ph>5或6)小分子有机酸不能与fe3+形成稳定的配合物,从而不能较好地溶解含铁矿物。草酸(l)溶解赤铁矿的机制与铁载体存在相似性,可分为质子促进溶解和基团促进溶解,可简单描述为:>fe(iii)-o+h+→>fe-o…h+(质子促进,方程1);>fe(iii)-oh+l/s+h+→>[fe(iii)-s/l]表面络合+2h2o(基团促进,方程2),方程式中l代表草酸的基团,s代表铁载体的基团。研究认为,基团促进作用可分为三个过程:1)通过基团交换作用在赤铁矿表面吸附与铁形成配合物;2)配合物脱离赤铁矿表面生成溶解性的铁;3)表面配合物的重新生成。因此,草酸在赤铁矿表面的吸附量、形成配合物的结构及稳定性在基团促进溶解过程中起决定性作用,任何影响赤铁矿表面配合物的浓度及其化学性质的因素都可影响赤铁矿溶解的反应速率。在土壤根际环境中,微生物分泌的铁载体与植物分泌的草酸是共同存在的。如图1所示,因草酸与fe3+形成的配合物—fe3+-l的稳定常数远远低于铁载体与fe3+形成的配合物—fe3+-s,铁载体能通过强螯合能力将草酸从fe3+-l置换出,形成fe3+-s,草酸重新释放到环境中与赤铁矿反应(方程2),草酸在反应中起到类似于催化剂的作用。可见,草酸与铁载体共同作用能增强对赤铁矿的溶解。草酸对赤铁矿的溶解能力受ph影响显著,例如草酸在ph=2.4的条件下对赤铁矿有很强的溶解能力,但在ph为5时,草酸不能溶解赤铁矿。因此,为更全面地了解铁载体与草酸共存状态下对赤铁矿的溶解,还需考虑不同酸碱环境的影响。

本发明所述背景电解质溶液可以是配置的电解质溶液,如0.05~0.15mnaclo4水溶液,也可以是土壤溶液。

优选地,本发明反应时间为192~240h。

优选地,本发明所述铁载体dfob和草酸的摩尔浓度均为190~210μm。

本发明的优点:

本发明在避光、ph3-9条件,采用铁载体dfob和草酸协同溶解赤铁矿,可极大地提高赤铁矿的铁溶出速率,提高铁的溶出量。

附图说明

图1是草酸与铁载体协同促进赤铁矿溶解的原理图;

图2.1是ph为3时,铁载体dfob与草酸单独及联合处理不同时间的溶解动力学曲线;

图2.2是ph为5.5时,铁载体dfob与草酸单独及联合处理不同时间的溶解动力学曲线;

图2.3是ph为9时,铁载体dfob与草酸单独及联合处理不同时间的溶解动力学曲线;

图2.4是不同ph条件下铁载体dfob与草酸单独及联合处理240h时溶解赤铁矿的量的对比条形图;

图3.1是ph为3时,铁载体dfob与柠檬酸单独及联合处理不同时间的溶解动力学曲线;

图3.2是ph为5.5时,铁载体dfob与柠檬酸单独及联合处理不同时间的溶解动力学曲线;

图3.3是ph为9时,铁载体dfob与柠檬酸单独及联合处理不同时间的溶解动力学曲线;

图3.4是不同ph条件下铁载体dfob与柠檬酸单独及联合处理240h时溶解的对比条形图;

图4.1是ph为3时,铁载体dfob与苹果酸单独及联合处理不同时间的溶解动力学曲线;

图4.2是ph为5.5时,铁载体dfob与苹果酸单独及联合处理不同时间的溶解动力学曲线;

图4.3是ph为9时,铁载体dfob与苹果酸单独及联合处理不同时间的溶解动力学曲线;

图4.4是不同ph条件下铁载体dfob与苹果酸单独及联合处理240h时溶解的对比条形图。

具体实施方式

以下通过实施例和对比例对本发明进行阐述。

实施例和对比例的载体dfob、草酸、柠檬酸和苹果酸的浓度以及赤铁矿悬浊液的浓度参见表1。

1.方法:

赤铁矿的溶解实验在避光、温度30℃、转速160rpm的摇床中进行,反应容器为一批100ml的高密度聚乙烯离心管。每个离心管中以0.01mnaclo4为背景电解质溶液,0.005mmes(ph范围5.5-6.7)作为缓冲剂用于调节溶液ph值,赤铁矿悬浊液的浓度为2.0g·l-1。反应溶液的ph用0.1mhcl或0.1mnaoh调节至3±0.1、5.5±0.1、9±0.1。不同处理中,铁载体dfob、草酸、柠檬酸及苹果酸的反应初始浓度如表1.1中所示,测定240h内赤铁矿的溶解动力学曲线,具体实验设置参照表1。

表1赤铁矿的溶解方法各参数设置

注:每个处理3个平行。

1.1赤铁矿粒径及比表面积的测定

赤铁矿粒径采用扫描电镜(sem)测定,约为200nm。比表面积(specificsurfacearea,m2·g-1)指单位质量物质的总表面积,是评价吸附剂性能的重要指标之一,测定方法有气体吸附法和溶液吸附法。本发明采用bet-n2吸附法测定,依托北京彼奥德电子技术有限公司测定。本发明中采用的赤铁矿的比表面积为5.562m2·g-1

1.2赤铁矿溶解量的测定

赤铁矿的溶解量用反应溶液中铁的浓度表示。用注射器在每个时间点取4ml样品,过0.22μm的聚醚砜滤头,确保所有赤铁矿颗粒都被截留在滤膜上,收集过滤液,保存于4℃的冰箱中待测。取滤液样品用0.1m的hcl按1:1的比例稀释,确保溶液中的fe是以自由离子形态存在。用电感耦合等离子体原子发射光谱仪(icp-oes)测定铁的浓度。

1.3数据分析

icp检测限两倍标准偏差内的的检测值视为零。数据用excel2007进行处理,使用origin8.0绘制数据图,用spss17.0中的one-wayanova-duncan’smultiplerangetest方法进行显著性分析。

2.实验结果与分析

观察ph3,5.5,9条件下,铁载体dfob与小分子有机酸单独处理及联合处理对赤铁矿溶解的影响。在实验过程中,ph3及ph5.5的处理中ph的变化范围在0-0.2之间,ph9处理中ph值变化范围较大,在0-1之间,但反应体系依然是处于碱性环境。未添加处理的对照组在ph3-9范围内未检测到赤铁矿的溶解。

2.1铁载体dfob与草酸的联合处理

如图2.1~2.3所示的ph3,5.5,9下,铁载体dfob与草酸单独及联合处理下赤铁矿的溶解量随时间变化的动力学曲线。由图可知,铁载体dfob与草酸联合处理在ph3,5.5,9下都能溶解赤铁矿,溶解能力随ph的升高而降低。不论在何ph下,加入草酸都能促进铁载体dfob溶解赤铁矿。

图2.4所示的反应240h时铁载体dfob单独处理、草酸单独处理溶解赤铁矿的量及两者单独处理溶解赤铁矿量之和及dfob及草酸联合处理溶解赤铁矿的量。采用duncan′smultiple-rangetest对相同ph下不同处理中赤铁矿的溶解量进行显著性分析(p<0.05,n=3)。

协同作用是指几种物质联合作用的效果要强于这几种物质单独作用效果的和。将铁载体dfob与草酸单独处理溶解赤铁矿量之和与联合处理溶解赤铁矿的量进行比较,发现在ph3,5.5,9下铁载体dfob与草酸在溶解赤铁矿中都存在显著的协同作用(p<0.05),如图2.1、2.2所示。

2.2铁载体dfob与柠檬酸的联合处理

图3.1~3.3所示的ph3,5.5,9下,铁载体dfob与柠檬酸单独及联合处理下赤铁矿的溶解量随时间变化的动力学曲线。图3.4为反应240h时铁载体dfob单独处理、柠檬酸单独处理溶解赤铁矿的量及两者单独处理溶解赤铁矿量之和及dfob及柠檬酸联合处理溶解赤铁矿的量。采用duncan′smultiple-rangetest对相同ph下不同处理中赤铁矿的溶解量进行显著性分析(p<0.05,n=3)。

2.3铁载体dfob与苹果酸的联合处理

图4.1~4.3所示的ph3,5.5,9下,铁载体dfob与苹果酸单独及联合处理下赤铁矿的溶解量随时间变化的动力学曲线。图4.4为反应240h时铁载体dfob单独处理、苹果酸单独处理溶解赤铁矿的量及两者单独处理溶解赤铁矿量之和及dfob及苹果酸联合处理溶解赤铁矿的量。采用duncan′smultiple-rangetest对相同ph下不同处理中赤铁矿的溶解量进行显著性分析(p<0.05,n=3)。

由图4.1~4.3可知,铁载体dfob与苹果酸联合处理在ph3,5.5,9下都能溶解赤铁矿。由图4.4知,在ph3及9下,加入苹果酸都能抑制铁载体dfob溶解赤铁矿,在ph5.5下加入苹果酸对铁载体dfob溶解赤铁矿没有影响。

3.结论

草酸(ph3,5.5,9)、柠檬酸(ph3,5.5)能促进铁载体dfob溶解赤铁矿,且草酸(ph3,5.5,9)、柠檬酸(ph5.5)与铁载体dfob在溶解赤铁矿中存在显著的协同作用。柠檬酸(ph9)、苹果酸(ph3,9)对铁载体dfob溶解赤铁矿有抑制作用。草酸对铁载体dfob溶解赤铁矿的促进效果最为明显,草酸在ph为3-9的条件下都能发挥促进作用,适用的ph范围广。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1