一种金属陶瓷复合烧结机炉篦条及其制备方法与流程

文档序号:15800072发布日期:2018-11-02 21:22阅读:217来源:国知局

本发明涉及金属基复合材料领域,具体涉及一种烧结机炉篦条及其制备方法。

背景技术

炉篦条是烧结机上的关键部件,工作时温度达到900℃以上,在回车道上又受到急剧冷却到100℃,同时还要承受烧结矿的撞击和高温磨损。在受到加热、冷却、撞击、磨损等过程的反复循环作用之后,表面逐渐氧化、开裂、塌陷而损坏。炉篦条在含有co、co2、so2和水蒸气的气体介质中,容易受到气体的腐蚀,所以炉篦条属于易损件,其使用寿命直接影响到烧结矿料的生产效率及生产成本。目前很多烧结机的炉篦条消耗量大,吨耗高,使用寿命短。烧结机炉篦条材质的发展经历了普通铸铁,耐热球铁,高铬合金铸铁、铸钢以及多元合金化高合金篦条等阶段,其中寿命最高的是多元合金化高合金篦条,当然成本也是最高的。金属炉篦条失效原因包括:(1)篦条在工作中受到高温氧化和气体的腐蚀,表层氧化或腐蚀后脱落,篦条之间间隙变大超过8mm时篦条失效;(2)烧结机在采用无铺底料工作时,高温下会有低熔点物质黏附在篦条上,此时篦条间隙变小,通风变差,篦条失效;(3)篦条在长时间高温和应力的作用下会发生蠕变,当蠕变超过一定尺寸时篦条失效;(4)由于篦条韧性差,受到撞击而断裂;(5)篦条受到烧结矿的磨损而失效;(5)金属炉篦条受热后容易膨胀,使得炉篦条之间的缝隙狭小,混合料布上台车后易造成堵塞,影响烧结燃烧速度和烧结效果;(6)由于除尘灰的循环利用,大量的k、na、pb、zn等有害元素的富集,这些有害元素容易结瘤粘接在炉篦条上,加剧了炉篦条的糊堵与侵蚀。另外高铬合金篦条抗冲击性差,在运输、使用过程中易断裂,还是影响篦条的使用寿命。所以金属炉篦条还是有不少的局限性。

通过查阅专利文献资料,烧结机炉篦条绝大多数都有铸铁或合金铸铁浇铸而成,也有一些通过技术创新制成复合炉篦条。例如专利申请cn102937374a“一种复合烧结机炉篦条的制备方法”公开了一种在炉篦条表面上镶嵌耐磨陶瓷片的制备工艺,以提高使用寿命。首先在炉篦条工作表面刨下3mm进行平整,在中线开出倒v型凹槽,再将带有倒v型的陶瓷片镶嵌在凹槽中,瓷片厚3mm,为氧化铝或氧化锆材质;金属炉篦条材质是高铬铸铁或球墨铸铁。该专利利用了陶瓷耐高温、耐磨、抗氧化、抗腐蚀特点有其优越性。但是炉篦条与陶瓷片是较简单的机械复合,金属与陶瓷膨胀差异大,同时烧结台车篦条运行中还不断翻滚,脱落的几率还是比较大的。另外氧化铝及氧化锆陶瓷抗热震性并不是最佳,价格也比较昂贵,从性价比来说还是有缺陷。

专利cn102605289b“烧结机炉篦条”介绍了金属炉篦条材料,c:1.0~1.2%,cr:20~25%,mn0.8~5.0%,si:0.6~1.0%,ni:0.8~2.0%,mo:0.6~1.2%,v:0.1~0.5%,re:0.01~0.03%,其余为fe。在实施例2中提到炉篦条浇铸前现在篦条型腔壁上涂抹合金粉末涂料3-5mm厚。合金粉末由sic粉、膨润土、纤维素、白乳胶、粘合剂淀粉组成,再加水球磨制成涂料,说明炉篦条复合层al2o3和sic增强颗粒体积百分数为30~40%。形成了优异的表面复合层,提高了炉篦条的使用寿命。按该专利涂料组成都是无机物及有机结合剂组成,应该不是合金粉末;依靠有机结合剂粘结涂料在金属篦条表面又在高温下动态使用,其粘附强度还有待于探究。涂料含有sic,在高温下容易氧化成sio2和co2,会造成涂料层的破坏。

所以现有技术的金属材质的炉篦条与涂层或陶瓷机械复合的炉篦条在技术上还是需要完善和发展的。必须开发出材料组织均匀,兼有金属与高温陶瓷材料的优点,符合炉篦条有良好的抗高温氧化性、抗腐蚀性、抗热震性、及良好的高温耐磨性和抗蠕变性的金属陶瓷复合结构件,作为新型炉篦条技术是急需的。



技术实现要素:

本发明涉及一种金属陶瓷复合烧结机炉篦条及其相应的制备方法,属于金属基复合材料技术领域。所述金属陶瓷复合烧结机炉篦条是将大量的耐热钢纤维复合到高温陶瓷粉体中,与单纯的金属件相比,使用温度大幅提高,可达到900~1200℃;加入大量的耐热钢纤维后,克服了普通高温陶瓷材料韧性差的弱点,综合了陶瓷材料和钢材的优点。所述金属陶瓷复合烧结机炉篦条具有高强度、高耐磨、高抗侵蚀等陶瓷材料优良性能,还具有弹性模量、韧性等钢结构的优良性能,是炉篦条制备技术的一种突破。

本发明技术是这样实现的:一种金属陶瓷复合烧结机炉篦条,其原料包括25~50wt%的耐热钢纤维,75~50wt%的al2o3-sio2系的莫来石质陶瓷粉。

优选的,所述耐热钢纤维的化学组成如下:c≤0.25%,si≤2.0%,mn≤2.0%,ni8~37%,cr14~26%,其余为fe。更优选的,所述耐热钢纤维直径φ0.3~1.0mm,长度15~25mm;熔点范围1400~1450℃。

所述al2o3-sio2系的莫来石质陶瓷粉具有非常优异的抗热震性能和良好的高温体积稳定性,是al2o3-sio2元系中常压下唯一稳定的二元固溶体,硬度高,耐火度达到1800℃。所以al2o3-sio2系的莫来石质陶瓷粉具有膨胀均匀、热震稳定性极好、荷重软化点高、高温蠕变值小、硬度大、抗化学腐蚀性好等特点。

优选的,所述al2o3-sio2系的莫来石质陶瓷粉的化学组成如下:al2o365~75%,sio218~26%,cao1.0~4.0%,tio21.0~3.0%,fe2o30.5~2.0%,p2o50.1~0.5%,碱金属氧化物1.0~1.5%。其中,所述碱金属氧化物为k2o和na2o。本发明所述的al2o3-sio2系的莫来石质陶瓷粉可以通过陶瓷生产厂家定制得到,其制备方法可以为:以莫来石为原料,在结合剂铝酸钙水泥和减水剂聚磷酸盐存在下,研磨成粉末,混合均匀。本发明所述al2o3-sio2系的莫来石质陶瓷粉中的主要矿物相都为莫来石,因此可以保持比较纯的物相结构。其中的al2o3、sio2由莫来石耐火原料带入,同时也带入了tio2、fe2o3、碱金属氧化物等成分;氧化钙主要是结合剂铝酸钙水泥带入,由于cao高温下与al2o3、sio2会反应生成低熔物,所以其含量必须控制在4.0%以下。p2o5是由减水剂聚磷酸盐带入,只要使本发明所述所述al2o3-sio2系的莫来石质陶瓷粉加水后形成流动性比较好的浆体就可以,尽量少加,所以控制其含量为0.1~0.5%之间。所述所述al2o3-sio2系的莫来石质陶瓷粉的粒度优选控制在≤0.21mm。

本发明还提供了金属陶瓷复合烧结机炉篦条制备方法,其包括如下步骤:

(1)将耐热钢纤维均匀放置在烧结机炉篦条形状的模具中,再向al2o3-sio2系的莫来石质陶瓷粉中加入占其重量7~10%的水,在搅拌锅内搅拌成流动性良好的陶瓷浆体,把陶瓷浆体倒入含有耐热钢纤维的模具内;

(2)在振动台上振动成型,使陶瓷浆体填充到钢纤维与模具的各个空间,并紧密包裹住每根钢纤维;

(3)振动成型后模内养护12~24h,硬化后脱模;

(4)脱模后的复合炉篦条结构件在室温下养护12~24h,再放入110℃烘箱干燥10~20h脱去水分,形成较高的强度。

进一步地为了使金属陶瓷复合烧结机炉篦条具有更高的强度与稳定体积性,可以把制好的炉篦条放入电炉中在900~1100℃范围内烧成3~5h,冷却后取出。就制成了高强度、抗氧化、抗侵蚀、组织均匀、结构稳定的金属陶瓷复合烧结机炉篦条。

本发明中所述室温是指15~25℃。

由于耐热钢纤维并不暴露在所述烧结机炉篦条表面,因此在应用中不粘灰、不结瘤,抗氧化、抗侵蚀。金属与陶瓷材料均匀复合,并烧结在一起,使炉篦条具有良好韧性与强度,耐磨与抗冲击性好。由于莫来石陶瓷材料体积密度只有2.7左右,所以该金属陶瓷复合烧结机炉篦条的重量约为原来金属炉篦条的一半左右,可以达到烧结台车轻量化效果,减少了炉篦条材料消耗。普通铸铁的导热率为48~61w/m.k,金属陶瓷复合烧结机炉篦条导热性不超过8.0w/m.k,这样烧结台车保温性就更好,炉篦条上铺的烧结矿损失的热量少;炉篦条下面的金属隔热板温度就更低,寿命就更长。所以本技术不仅使炉篦条使用寿命高,还可以实现烧结台车整体更加节能化、环保化、轻量化、长寿化,降低烧结能源消耗,改善现场操作环境,产生更多的综合效益。本技术发明的炉篦条寿命可达3年以上,比原来增加了1倍。

具体实施方式

实施例1~5中的耐热钢纤维的化学组成如下:c0.2%,si1.0%,mn1.0%,ni26%,cr21%,其余为fe;所述耐热钢纤维直径φ0.5~0.7mm,长度15~25mm;熔点大约为1450℃。

实施例1~5中的al2o3-sio2系的莫来石质陶瓷粉为按照表1中的组成,向陶瓷生产厂家定制得到。

表1实施例1~5中al2o3-sio2系的莫来石质陶瓷粉化学组成

实施例1

一种金属陶瓷复合烧结机炉篦条制备方法,其由25wt%的耐热钢纤维和75wt%的al2o3-sio2系的莫来石质陶瓷粉制备得到。制备方法如下:

将耐热钢纤维均匀放置在炉篦条形状的模具中。向al2o3-sio2系的莫来石质陶瓷粉中加入占其重量10%的水,在搅拌锅内搅拌成流动性良好的浆体,把浆体倒入含有耐热钢纤维的模具内,在振动台上振动成型30秒,使陶瓷浆体填充到钢纤维与模具的各个空间,并紧密包裹住每根钢纤维。成型后模内养护24h,硬化后脱模;脱模后的复合炉篦条结构件在室温下养护24h,再放入110℃烘箱干燥20h,结构件形成较高的强度。再把制好的炉篦条放入电炉中在1100℃范围内烧5h,冷却后取出,制成组织结构均匀的金属陶瓷复合烧结机炉篦条。

实施例2

一种金属陶瓷复合烧结机炉篦条制备方法,其由30wt%的耐热钢纤维和70wt%的al2o3-sio2系的莫来石质陶瓷粉制备得到。制备方法如下:

将耐热钢纤维均匀放置在炉篦条形状的模具中。向al2o3-sio2系的莫来石质陶瓷粉加入占其重量9.2%的水,在搅拌锅内搅拌成流动性良好的浆体,把浆体倒入含有耐热钢纤维的模具内,在振动台上振动成型35秒,使陶瓷浆体填充到钢纤维与模具的各个空间,并紧密包裹住每根钢纤维。成型后模内养护20h,硬化后脱模;脱模后的复合炉篦条结构件在室温下养护20h,再放入110℃烘箱干燥18h,结构件形成较高的强度。再把制好的炉篦条放入电炉中在1000℃范围内烧4h,冷却后取出,制成组织结构均匀金属陶瓷复合烧结机炉篦条。

实施例3

一种金属陶瓷复合烧结机炉篦条制备方法,其由35wt%的耐热钢纤维和65wt%的al2o3-sio2系的莫来石质陶瓷粉制备得到。制备方法如下:

将耐热钢纤维均匀放置在炉篦条形状的模具中。向al2o3-sio2系的莫来石质陶瓷粉加入占其重量8.5%的水,在搅拌锅内搅拌成流动性良好的浆体,把浆体倒入含有耐热钢纤维的模具内,在振动台上振动成型40秒,使陶瓷浆体填充到钢纤维与模具的各个空间,并紧密包裹住每根钢纤维。成型后模内养护16h,硬化后脱模;脱模后的复合炉篦条结构件在室温下养护16h,再放入110℃烘箱干燥15h,结构件形成较高的强度。再把制好的炉篦条放入电炉中在950℃范围内烧3h,冷却后取出,制成组织结构均匀金属陶瓷复合烧结机炉篦条。

实施例4

一种金属陶瓷复合烧结机炉篦条制备方法,其由40wt%的耐热钢纤维和60wt%的al2o3-sio2系的莫来石质陶瓷粉制备得到。制备方法如下:

将耐热钢纤维均匀放置在炉篦条形状的模具中。向al2o3-sio2系的莫来石质陶瓷粉加入占其重量7.8%的水,在搅拌锅内搅拌成流动性良好的浆体,把浆体倒入含有耐热钢纤维的模具内,在振动台上振动成型50秒,使陶瓷浆体填充到钢纤维与模具的各个空间,并紧密包裹住每根钢纤维。成型后模内养护15h,硬化后脱模;脱模后的复合炉篦条结构件在室温下养护15h,再放入110℃烘箱干燥12h,结构件形成较高的强度。再把制好的炉篦条放入电炉中在950℃范围内烧3h,冷却后取出,制成组织结构均匀金属陶瓷复合烧结机炉篦条。

实施例5

一种金属陶瓷复合烧结机炉篦条制备方法,其由50wt%的耐热钢纤维和50wt%的al2o3-sio2系的莫来石质陶瓷粉制备得到。制备方法如下:

将耐热钢纤维均匀放置在炉篦条形状的模具中。向al2o3-sio2系的莫来石质陶瓷粉加入占其重量7.0%的水,在搅拌锅内搅拌成流动性良好的浆体,把浆体倒入含有耐热钢纤维的模具内,在振动台上振动成型60秒,使陶瓷浆体填充到钢纤维与模具的各个空间,并紧密包裹住每根钢纤维。成型后模内养护12h,硬化后脱模;脱模后的复合炉篦条结构件在室温下养护12h,再放入110℃烘箱干燥10h,结构件形成较高的强度。再把制好的炉篦条放入电炉中在900℃范围内烧5h,冷却后取出,制成组织结构均匀金属陶瓷复合烧结机炉篦条。

对比例

参照专利cn102605289b的实施例1制备铸铁炉篦条:其成分百分比为:c1.0%、cr22%、mn3%、si0.8%、ni1.0%、mo1.0%、v0.5%、ce0.02%、余量为铁。

测试例

对实施例1~5制得的金属陶瓷复合烧结机炉篦条和对比例制得的铸铁炉篦条的性能进行测试,测试结果如表2。其中,耐压试验时,实施例的试样不像陶瓷材料会完全压溃,因此本表中数据指试样出现裂纹变形时的数据。抗侵蚀试验的测试方法为:收集烧结台车上结瘤物放置在炉篦条表面,经过1000℃×24h热处理,观察炉篦条表面侵蚀情况,进行对比。

表2实施例和对比例的性能测试结果

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1