一种正六角形碳化硼陶瓷片的制作方法

文档序号:14264036阅读:328来源:国知局
一种正六角形碳化硼陶瓷片的制作方法

本发明属于防弹陶瓷领域,具体涉及一种正六角形碳化硼陶瓷片。



背景技术:

随着科技的快速发展,战场上面临的威胁越来越大,使得防弹装甲材料日益朝着高硬度、高强度、高韧性、低密度的方向发展。传统金属防弹材料由于密度大,使得车辆、船舶和飞机不得不牺牲其有效载荷,同时过厚的装甲又降低了设备的操作灵活性,因此,轻质防弹材料已经成为目前的研究热点和发展趋势。陶瓷材料具有强度高、硬度大、耐高温、抗氧化、密度低等优良的性能,以及吸能效应、磨损效应、动力学效应等有益于发挥陶瓷材料的抗弹能力,这些特性是金属材料、高分子材料及其复合材料所不具备的。其中b4c陶瓷具有比重轻(2.52g/cm3)、硬度高(~36gpa)、弹性模量大(~45gpa),以及良好的化学稳定性等优异性能,是现代轻质高效防弹装甲首选的抗弹陶瓷,已在美、英等先进国家的士兵防护、军机防护、车辆防护等领域得到广泛的应用。钛合金具有优良的硬度和韧度,其密度也低于装甲钢,尽管密度仅是装甲钢的60%,但其强度可与均质钢媲美,韧度也要优于大多数铝合金装甲,综合防护性能比同等重量的均质钢装甲优越30%-40%。

b4c的熔点高达2350℃,纯b4c材料因其高共价键含量和低自扩散系数,烧结性较差,通常可以通过添加烧结助剂促进其烧结。另外,b4c陶瓷的低韧性严重影响其抗弹性能。因此可以采取成分及结构复合的方式来提高b4c陶瓷的韧性。目前b4c陶瓷的制备主要是热压烧结、无压烧结、反应烧结三种工艺。其中热压烧结是制备高性能碳化硼陶瓷的主要方法,一般用细碳化硼粉末在2100℃即可得到相对密度大于98%的碳化硼制品。目前,制备大尺寸陶瓷装甲仍然面临较大的困难。



技术实现要素:

为解决以上问题,本发明提供一种正六角形碳化硼陶瓷片,其特征在于:所述碳化硼陶瓷片由碳化硼陶瓷材料热压而成,所述碳化硼陶瓷材料包括碳化硼陶瓷基体和石墨烯,所述石墨烯分散在碳化硼陶瓷基体中;所述碳化硼陶瓷片呈正六角形,且陶瓷片表面呈弧形。

作为优选,所述碳化硼陶瓷片背部向上凸设有环形陶瓷。

作为优选,所述环形陶瓷与碳化硼陶瓷片一体成型。

作为优选,所述石墨烯的质量分数占碳化硼陶瓷基体的1%~5%。

与现有技术相比,本发明具有以下有益效果:

石墨烯是二维材料,可通过表面改性和修饰,显著降低石墨烯层片之间的相互吸引力而避免团聚,在一些液体介质中有很好的分散性和稳定性,从而可以制备稳定分散的石墨烯溶液,将其与陶瓷基体浆料混合,可得到植入效果良好的石墨烯-陶瓷混合原料,石墨烯是通过钉扎陶瓷界面、诱导裂纹偏转、分叉以及裂纹桥联、石墨烯断裂和拔出吸能等机制起到强化韧化作用。为了提高碳化硼的韧性,本公司采用自主开发的石墨烯增韧热压碳化硼技术,将石墨烯均匀分散在碳化硼粉末中,之后采用热压烧结,获得了性能优良的碳化硼陶瓷材料。正六角形陶瓷片的设计有利于陶瓷片的合理排布和紧密结合,以及相互约束,有利于制备大尺寸的防弹装甲。陶瓷背面凸起的的环形陶瓷使钛合金对陶瓷的约束更牢固,提高其抗多发弹性能。

附图说明

图1为本发明提供的造粒机的结构示意图;

图2为本发明提供的陶瓷片的俯视图;

图3为本发明提供的陶瓷片的侧视图;

图4为本发明提供的碳化硼钛合金复合装甲的俯视图;

图5为本发明提供的碳化硼钛合金复合装甲的剖视图。

具体实施方式

下面结合说明书附图对本发明进行进一步说明。

实施例1碳化硼陶瓷片的制备

步骤1)原料粉末:选用平均粒径为3-5um的碳化硼粉末作为原料,添加3%-4%的石墨粉作为烧结助剂,石墨粉的平均粒径为1-2um;

步骤2)配制石墨烯溶液:配制1-2wt%的石墨烯水溶液或者酒精溶液,加入n-甲基吡咯烷酮为分散剂,超声分散10-20h,获得石墨烯均匀分散的溶液;其中石墨烯的片径>1um,层数<10层,石墨烯的添加量占碳化硼粉末的1-5wt%;

步骤3)将步骤1)中的得到的粉末和步骤2)中得到的石墨烯溶液加入球磨机中球磨8-10h,球磨机转速为30-50rpm,球料比2:1;

步骤4)造粒:如图1所示,采用造粒机,造粒机为本申请的发明人自制的造粒机,具体造粒机的结构如图1所示,包括浆料桶1,蠕动泵电机,蠕动泵2,喷盘3,喷盘电机,造粒机桶4,超声装置6,出料口7,所述浆料桶1与蠕动泵2连通,所述蠕动泵2与喷盘3连通,所述喷盘3与造粒机桶4连通,所述造粒机桶4与超声装置6连通,所述喷盘设有风口,其中所述风口可以为沿喷盘中心轴线上周围开设的通孔。所述风口与鼓风机连接,所述超声装置内通入去离子水5。所述造粒机的具体工作步骤为:将喷盘3转速设定为350转/分钟,超声装置的频率设定为40-60khz;驱动蠕动泵电机,将上述步骤3)中球磨好的浆料桶中的浆料通过蠕动泵2输送到造粒机顶端的喷盘3中,喷盘电机驱动系统驱动喷盘3旋转,旋转的喷盘3通过离心作用将浆料分散,鼓风机通过风口将分散的浆料吹至底部带有超声装置6的水中,颗粒不溶于水而沉淀至底部,这样,得到粒度分布均匀、流动性良好、水分含量适中的粉料,将得到的粉料烘干,干燥温度为100-110℃,烘干后得到造粒粉;

步骤5)将造粒粉装入预制形状的石墨模具中进行热压,温度2000-2200℃,压力20-50mpa,烧结时间30-60min。

如图2所示,采用石墨模具,得到正六角形陶瓷片8,如图3所示,陶瓷片表面呈弧形9,所述弧形的最高面与陶瓷片底部之间的距离为10mm左右,这样,防弹性能增强;另外,所述陶瓷片背部向上延伸设有环形陶瓷10,环形陶瓷向上凸起,所述凸起与六角形陶瓷片8一体成型;其高度为2mm左右,如图2所示,所述环形陶瓷片的边缘接近正六角形陶瓷片的边缘,这样,陶瓷片在后期拼接浇注的过程更加牢靠。

实施例2碳化硼-钛合金复合装甲

步骤1)根据实施例1的制备方法,且实施例1步骤5)中的的石墨模具正六角形,如图2所示,得到正六角形的陶瓷片,将陶瓷片8拼接在一起形成陶瓷板11。

步骤2)首先根据碳化硼陶瓷板11的尺寸预制一定形状的模具,将待浇注的陶瓷板11在模具中安放好,在400℃烘箱内预热1小时,取出放置在浇注槽内。然后熔炼炉升温至一定温度,待钛合金完全熔化后浇铸于陶瓷块周围,熔融钛合金凝固后即实现金属对陶瓷材料的封装,形成钛合金包裹碳化硼陶瓷的整体结构。钛合金的用量根据产品浇注尺寸计算,浇注尺寸如图3所示。本发明使用的钛合金是具有良好机械和防弹性能的ti-al-v-fe合金。

如图4所示,得到一块碳化硼-钛合金复合装甲,其长度为340mm,宽度为330mm,如图5所示,包裹层钛合金12上表面距离碳化硼陶瓷板11表面的距离为3mm,包裹层钛合金12下表面距离碳化硼陶瓷板11背部的距离为10mm;包裹层钛合金12左侧面和右侧面距离碳化硼陶瓷板11表面的距离均为5mm。

比较例1

与实施例1的实验步骤相同,唯一的不同未加入石墨烯溶液。

将实施例1和上述制备得到的碳化硼陶瓷板进行防弹性能测试,结果表明,加入石墨烯后其抗弯强度从大约350mpa提高到了500mpa以上,综合防弹性能大大增强;

加入石墨烯对碳化硼陶瓷进行增韧,采用超声、搅拌、球磨等工艺使石墨烯均匀分散在陶瓷基体中,高度分散的石墨烯片有效改善陶瓷材料的脆性。

将碳化硼陶瓷用钛合金浇注,形成钛合金四面包覆碳化硼的整体结构。该技术的优点:一、工艺成熟,工序简单,能够浇注复杂形状和净近成形产品;

能够最大限度地保持陶瓷和钛合金的各自特性,充分发挥碳化硼陶瓷轻质高硬和钛合金高强高韧的优点;钛合金对陶瓷板的三维约束结构能有效减缓碳化硼陶瓷脆性对材料的不利影响;正六角形陶瓷片的设计有利于陶瓷片的合理排布和紧密结合,以及相互约束,有利于制备大尺寸的防弹装甲。陶瓷背面的环形凸起使钛合金对陶瓷的约束更牢固,提高其抗多发弹性能;高硬度的碳化硼陶瓷和高强度的钛合金结合成一体结构,为制备高性能复合防弹装甲开拓了新的途径。

以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应该涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1