通过沸石间转变合成MTW骨架型分子筛的制作方法

文档序号:17929665发布日期:2019-06-15 00:43阅读:381来源:国知局
通过沸石间转变合成MTW骨架型分子筛的制作方法
本申请要求来自在2016年11月17日提交的序号为62/423,271的美国临时专利申请的优先权,其公开内容以其全文通过引用结合至本文。
技术领域
本公开内容通常涉及mtw骨架型沸石的合成。
背景技术
:背景分子筛是一类商业上重要的结晶材料。它们具有通过独特的x射线衍射图证明的带有有序孔结构的独特晶体结构。该晶体结构限定了作为不同种类的特征的空腔和孔。诸如沸石的分子筛已广泛用于催化、吸附、分离和色谱。由国际沸石协会(internationalzeoliteassociation)鉴定为具有骨架型mtw的分子筛是已知的。mtw骨架型材料的实例包括czh-5、nu-13、theta-3、tpz-12和zsm-12。mtw骨架型材料具有带有12元环的一维孔体系。英国专利申请号2,079,735公开了czh-5及其使用胆碱作为结构导向剂的合成。美国专利号4,743,437公开了nu-13及其在作为结构导向剂的哌嗪化合物的存在下的合成。欧洲专利申请号162,719公开了theta-3及其在式bznr3+x-的季氮化合物的存在下的合成,其中bz为苄自由基,r为烃基基团且x-为阴离子。美国专利号4,557,919公开了tpz-12及其在作为结构导向剂的含吡咯烷或哌啶的二铵化合物的存在下的合成。zsm-12及其在四甲基铵或四乙基铵结构导向剂的存在下的传统制备公开于美国专利号3,832,449中。美国专利号4,391,785公开了一种从反应混合物合成zsm-12的方法,该反应混合物包含作为结构导向剂的选自二甲基吡啶卤化物和二甲基吡咯烷卤化物的化合物。美国专利号4,452,769和4,537,758公开了从含有作为结构导向剂的甲基三乙基铵阳离子的反应混合物合成zsm-12的方法。已经用于合成zsm-12的其它结构导向剂包括dabco-cn-敌草快阳离子,其中n=4、5、6或10(参见美国专利号4,482,531);双(二甲基哌啶)三亚甲基阳离子(参见美国专利号4,539,193);苄基三乙基铵阳离子(参见美国专利号4,552,738);二苄基二甲基铵阳离子(参见美国专利号4,636,373);二甲基二乙基铵阳离子(参见美国专利号4,552,739);苄基三甲基铵阳离子(参见美国专利号4,585,637);双(n-甲基吡啶基)亚乙基阳离子(bis(n-methylpyridyl)ethyliniumcation)(参见美国专利号4,585,746);六亚甲基亚胺(美国专利号5,021,141),十甲季铵阳离子(参见美国专利号5,192,521);双(甲基吡咯烷)敌草快-n阳离子,其中n=4、5或6(参见美国专利号5,137,705)和1,6-双(2,3-二甲基咪唑)己烷双阳离子(参见美国专利号8,679,451)。根据本公开内容,现在已经发现mtw骨架型沸石可在聚乙烯亚胺存在下通过沸石间转化(即一种沸石结构转变为另一种沸石结构)来合成,并且在一些情况下,已经发现可生成小晶体形式的mtw骨架沸石。技术实现要素:概述在一个方面,提供了一种合成mtw骨架型沸石的方法,该方法包括(a)制备反应混合物,其包含:(1)fau骨架型沸石;(2)聚乙烯亚胺;(3)氟离子;和(4)水;以及(b)使所述反应混合物经历足以形成mtw骨架型沸石晶体的结晶条件。在另一方面,提供了一种在其孔结构内包含聚乙烯亚胺的mtw骨架型沸石。mtw骨架型沸石具有以摩尔比计的其合成后原样的且无水形式的如下组成:宽示例性sio2/al2o3≥1030-500q/sio2>0至0.1>0至0.1f/sio2>0至0.1>0至0.1其中q为聚乙烯亚胺。附图说明附图的简要说明图1是实施例1中制备的合成后原样的沸石的扫描电镜(sem)图像。图2(a)和2(b)显示正癸烷在实施例2的pd/mtw催化剂上的选择性加氢转化结果。图2(a)是正癸烷转化率随温度变化的图。图2(b)是产物分布随转化率变化的图。详细说明引言以下术语将贯穿整个说明书使用并且将具有以下含义,除非另外指明。术语“沸石”是指结晶铝硅酸盐复合物,其是微孔的并且由共角alo2和sio2四面体形成。术语“骨架型”以“atlasofzeoliteframeworktypes”,第六次修订版,elsevier,2007中描述的含义使用。术语“合成后原样的”是指其除去有机结构导向剂之前结晶之后的形式的沸石。术语“无水的”在本文中用于指基本上没有物理吸附和化学吸附水的沸石。如本文中所用,针对周期表族的编号方案如chem.eng.news,63(5),26-27(1985)中所描述。反应混合物通常,本发明mtw骨架型沸石通过以下方式合成:(a)制备反应混合物,其包含:(1)fau骨架型沸石;(2)聚乙烯亚胺;(3)氟离子;和(4)水;以及(b)使所述反应混合物经历足以形成mtw骨架型沸石晶体的结晶条件。从其形成mtw骨架型沸石的反应混合物的组成以摩尔比计示于下表1中:表1反应物宽示例性sio2/al2o3≥1030-500q/sio20.10-0.600.10-0.60f/sio20.10-0.600.10-0.60h2o/sio25-6010-40其中组成变量q为聚乙烯亚胺。合适的fau骨架型沸石可从例如zeolystinternational(conshohocken,pa)和tosohcorporation(tokyo,日本)商购。聚乙烯亚胺可为线性或支化聚乙烯亚胺。合适的聚乙烯亚胺包括具有1500-5000的数均分子量(mn)的那些。合适的氟离子源包括氟化氢、氟化铵和二氟化氢铵。反应混合物还可期望地以反应混合物的0.01-10,000ppm重量(例如100ppm-5,000ppm重量)的量使用分子筛材料的晶种(如来自之前合成的mtw骨架型沸石)。反应混合物可分批地或连续地制备。本文中所描述的结晶沸石的晶体尺寸、形态和结晶时间可随反应混合物的性质和结晶条件而变化。结晶和合成后处理来自以上反应混合物的mtw骨架型沸石的结晶可在静态、翻滚或搅拌条件下在合适的反应器容器(如聚丙烯罐或特氟隆衬里的或不锈钢高压釜)中在125℃-200℃的温度下进行足以在所用温度下发生结晶的时间(例如5-20天)。结晶通常在自生压力下于封闭系统中进行。一旦已经形成mtw骨架型沸石的晶体,则固体产物通过标准机械分离技术如离心或过滤从反应混合物中回收。对晶体进行水洗涤,并且然后干燥以获得合成后原样的沸石晶体。干燥步骤典型地在低于200℃的温度下进行。作为结晶过程的结果,经回收的结晶沸石产物在其孔结构内含有至少一部分合成中使用的结构导向剂。q和f组分通过传统的结晶后方法被容易地除去,该q和f组分由于它们在结晶期间存在而与合成后原样的产物相关。可对合成后原样的mtw骨架型沸石进行处理,以除去部分或全部的在其合成中使用的有机结构导向剂。这可通过热处理方便地实现,其中可将合成后原样的材料加热至至少370℃的温度至少1分钟且通常不长于20小时。热处理可在高达约925℃的温度下进行。虽然可采用低于大气压用于热处理,但是为了方便起见,大气压可能是期望的。额外地或可替代地,有机结构导向剂可通过用臭氧处理来除去(参见例如a.n.parikh等,micropor.mesopor.mater.2004,76,17-22)。本发明沸石合成可在不存在第1族和/或第2族金属阳离子的情况下进行,从而消除了对于在热处理之后离子交换产物以除去任何包藏的结构导向剂的需要。本发明mtw骨架型沸石中的任何阳离子可根据本领域公知的技术(例如通过与其它阳离子离子交换)被替代。优选的替代阳离子可包括金属离子、氢离子、氢前体(例如铵)离子及其组合。特别优选的替代阳离子可包括针对吸附和/或某些烃转化反应定制催化活性的那些。这样的阳离子包括氢、稀土金属和/或元素周期表第2-15族的一种或多种金属。本发明mtw骨架型沸石可与加氢组分如铬、钼、锰、铼、钴、镍和/或贵金属(如钯或铂)紧密结合,在那里可实施加氢-脱氢功能。这样的组分可通过共结晶、交换到复合物中、在其中浸渍、与其紧密物理掺合、或经由本领域技术人员已知的任何合适方法的方式处于复合物中。本发明mtw骨架型沸石可用作吸附剂和/或催化剂。当用作催化剂时,可期望将本发明沸石与另一种对有机转化方法中所用温度和其它条件耐受的材料结合。这样的材料包括活性和非活性材料和合成或天然存在的沸石,以及无机材料如粘土、二氧化硅和/或金属氧化物如氧化铝。后者可以是天然存在的或者为胶状沉淀物或凝胶形式,包括氧化硅和金属氧化物的混合物。将材料与本发明沸石结合使用(即与其合并或在合成活性新晶体期间存在)倾向于在某些有机转化方法中改变催化剂的转化率和/或选择性。此外,非活性材料适合用作稀释剂以控制给定方法中的转化量,以便产物可以经济且有序的方式获得而无需采用其它用于控制反应速率的手段。这样的非活性材料可引入到天然存在的粘土(例如膨润土和高岭土)中,以在商业操作条件下改进催化剂的抗碎强度。这些材料(即粘土、氧化物等)起到催化剂的粘结剂的作用。期望提供具有良好抗碎强度的催化剂,因为在商业用途中期望防止催化剂分解成粉末状材料。通常仅出于改进催化剂的抗碎强度的目的已经采用这些粘土和/或氧化物粘结剂。可与本发明沸石复合的天然存在的粘土包括蒙脱石和高岭土族,这些族包括亚膨润土(sub-bentonite)以及常称为dixie、mcnamee、georgia和florida粘土的高岭土或其中主要矿物成分为埃洛石、高岭石、迪开石、珍珠陶土或蠕陶土的其它高岭土。这样的粘土可以原始开采或者最初经历煅烧、酸处理或化学改性的原始状态使用。用于与本发明沸石复合的粘结剂还包括无机氧化物如二氧化硅、氧化锆、二氧化钛、氧化镁、氧化铍、氧化铝及其混合物。除了前述材料之外,本发明沸石可与多孔基质材料复合,该多孔基质材料如二氧化硅-氧化铝、二氧化硅-氧化镁、二氧化硅-氧化锆、二氧化硅-氧化钍、二氧化硅-氧化铍、二氧化硅-氧化钛以及三元复合物如二氧化硅-氧化铝-氧化钍、二氧化硅-氧化铝-氧化锆、二氧化硅-氧化铝-氧化镁和二氧化硅-氧化镁-氧化锆。本发明mtw骨架型沸石和基质的相对比例可广泛地变化,其中mtw骨架型沸石的含量为复合物的1-90%重量(例如2-80%重量)。本发明mtw骨架型沸石可在多种烃转化方法如加氢裂化、异构化、加氢、脱氢、聚合、重整、甲苯歧化和乙苯转化中具有可能的应用或用作催化剂。沸石的表征以其合成后原样的且无水形式,本发明mtw骨架型沸石具有以摩尔比计的如表2中所述的化学组成:表2宽示例性sio2/al2o3≥1030-500q/sio2>0至0.1>0至0.1f/sio2>0至0.1>0至0.1其中q为聚乙烯亚胺。应当注意,本发明mtw骨架型沸石的合成后原样的形式可具有与用于制备该合成后原样的形式的反应混合物的反应物的摩尔比不同的摩尔比。该结果可由于100%的反应混合物的反应物不完全引入到(从反应混合物)所形成的晶体中而发生。以其煅烧形式,本发明mtw骨架型沸石具有包含以下摩尔关系的化学组成:al2o3:(n)sio2其中n≥10(例如30-500或30-100)。经合成的本发明mtw骨架型沸石通过其粉末x射线衍射图来表征。代表mtw骨架型沸石的粉末xrd图可参考“collectionofsimulatedxrdpowderpatternsforzeolites”,第五次修订版,elsevier,2007。衍射图案的微小变化可由特定样品的骨架种类的摩尔比的变化(归因于晶格常数的改变)导致。此外,足够小的晶体将影响峰的形状和强度,导致显著的峰展宽。衍射图的微小变化可由制备中所使用的有机化合物的变化导致。煅烧还可引起x射线衍射图中的微小位移。尽管存在这些微小的微扰,但基本晶体结构保持不变。具体实施方式实施例以下说明性实施例旨在为非限制性的。实施例1在特氟隆衬里中装入1.08gcbv-780y-沸石(zeolystinternational,sio2/al2o3摩尔比=80)、4.86g去离子水、0.42g线性聚乙烯亚胺(mn=1800),且最后是0.36克浓缩hf。搅拌所得凝胶直至其变得均匀。然后将衬里加盖并放置于帕尔(parr)钢高压釜反应器中。然后将高压釜放置于烘箱中并在170℃下伴随旋转(43rpm)加热11天。固体产物通过过滤回收,用去离子水洗涤并且在95℃下干燥。产物的粉末xrd图与作为小晶体mtw骨架型沸石的产物一致。产物的sem图像显示在图1中。该产物由聚集成棒簇的非常薄的单棒组成。棒的平均宽度小于100nm。产物具有如通过icp元素分析确定的70的sio2/al2o3摩尔比。实施例2将来自实施例1的材料于595℃下在空气中煅烧5小时。煅烧后,通过如下方式用钯负载该材料:在室温下混合4.5g0.148nnh4oh溶液和5.5g去离子水以及(nh3)4pd(no3)2溶液(缓冲至ph9.5)三天,使得1g该溶液中混合有提供0.5wt%pd负载的1g沸石。经回收的pd/mtw沸石用去离子水洗涤,在95℃下干燥,并且然后于482℃下在空气中煅烧3小时。然后将经煅烧的pd/mtw催化剂造粒、破碎并筛分至20-40目。对于催化测试,将0.5gpd/mtw催化剂加载到23英寸长×0.25英寸外径的不锈钢反应器管的中央,其中在催化剂上游加载有铝氧粉以用于预加热进料(1200psig的总压力;当在1大气压和25℃下测量时,向下流动氢速率为160ml/min;并且向下流动液体进料速率为1ml/h)。首先将所有材料于约315℃下在流动氢中还原1小时。产物每60分钟通过在线毛细管气相色谱(gc)分析一次。来自gc的原始数据通过自动数据收集/处理系统收集,并且从原始数据计算烃转化率。转化率定义为反应以生成其它产物(包括异c10)的正癸烷的量。收率表达为除正癸烷之外产物的摩尔百分比,并且包括异c10异构体作为收率产物。结果显示在图2(a)和2(b)中。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1