一种Mg(Al,Cr)2O4复合尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法与流程

文档序号:15357121发布日期:2018-09-05 00:07阅读:435来源:国知局

本发明涉及一种氧化镁基泡沫陶瓷过滤器及其制备方法,具体是一种mg(al,cr)2o4复合尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法,属于金属材料与冶金领域。本发明所制备的过滤器特别适用于镁及其合金熔体的过滤净化,亦可以用于铝及其合金熔体的过滤净化。



背景技术:

镁的化学性质活泼,在铸造及加工过程中,极易与氧、氮及水蒸气发生化学反应,生成的产物残留在镁中,影响制品的内部质量,恶化制品性能。根据镁合金中夹杂物的种类和性质,一般将夹杂物分为金属夹杂和非金属夹杂两大类:(1)金属夹杂物:镁合金在原镁生产和后期加工过程中,会不可避免的引入一些金属单质或者金属化合物夹杂,它们以粒子状、簇状等形态残留在镁合金的基体或者晶界上,主要包括金属单质α-fe粒子、锰-铁的金属化合物如(fe,mn)3si,(fe,mn)5si3等;(2)非金属夹杂物:镁合金中的非金属夹杂物主要以镁的氮氧化合物为主,如mgo,mg3n2等;镁合金在熔炼过程中添加以氯化物(kcl、nacl、mgcl2等)为主的精炼剂,精炼过程中熔剂不能完全去除,会有少量的熔剂残留在镁熔体中,造成镁金属熔剂夹杂。悬浮的氧化夹杂在结晶时由结晶前沿被推向晶界,夹杂物一般以薄膜状、粒子状、簇状的形态残留在镁合金晶界处。有统计资料表明,mgo占镁合金的所有夹杂物的80%以上,分布形态为薄膜状、粒子状及簇状。镁合金熔铸过程中产生的夹杂物不仅严重恶化合金的力学性能和耐蚀性能,而且降低了其机加工和阳极氧化处理的表面质量。对于压铸镁合金而言,其合金内部的薄膜状和粒子状氧化物的含量需要控制在100cm2/kg和100mm3/kg以下才能满足正常的使用要求。因此,在熔铸过程中去除镁熔体中的夹杂物以提高熔体的纯净度的净化工艺成为镁合金生产的关键。

熔体净化工艺可分为熔剂净化与非熔剂净化两大类。熔剂净化工艺因除杂效率高、成本低、操作方便而成为镁合金生产中普遍采用的净化工艺,但是熔剂净化也存在着金属损耗增加、熔剂夹杂、不能除气等不足,尤其是在熔炼稀土镁合金时,熔剂还会大量消耗合金中的稀土元素。非熔剂净化工艺不但能弥补熔剂净化工艺的不足而且具有优异的净化效果,成为目前应用发展的重要熔体净化工艺并相继开发了过滤净化、旋转喷吹净化、电磁净化、超声波处理等多种非熔剂净化技术。相比简单的金属网熔体过滤,具有特殊的三维多孔陶瓷结构泡沫陶瓷过滤器,因其孔隙率高(70%~90%)、吸附能力强、耐化学腐蚀等特点,能够通过滤饼效应、吸附效应及整流效应对合金熔体中的夹杂物颗粒具有很好的过滤效果。泡沫陶瓷过滤法不但可以滤掉合金熔体中小至10μm~20μm的微细夹杂物颗粒,而且能过滤掉一般过滤介质难以滤除的液态熔剂夹杂。

美国专利文献us3962081a(ceramicfoamfilter),us4024212a(ceramicfoamandmethodofpreparation),中国专利文献cn103787691a(一种氧化铝泡沫陶瓷的制备方法)等都公开了一些用于铝合金、钢铁熔体过滤夹杂物的al2o3,zro2,sic、sio2基泡沫陶瓷的方法,然而,mgo的标准生成自由焓很低,活性很高的镁熔体非常容易与泡沫陶瓷基体材料发生(1)~(4)式反应而迅速溶解,从而堵塞其过滤孔隙或熔蚀进入镁及其合金熔体内成为有害成分,因此,这些现有材质的泡沫过滤器并不适合于镁和镁合金熔体的过滤。

3mg(l)+al2o3(s)=3mgo(s)+2al(l)(1)

2mg(l)+zro2(s)=2mgo(s)+zr(s)(2)

6mg(l)+4al(l)+3sic(s)=3mg2si(s)+al4c3(s)(3)

4mg(l)+sio2(s)=2mgo(s)+mg2si(s)(4)

mgo为立方晶系nacl型结构,晶格常数为0.411nm,属于离子键化合物,其熔点为2852℃,远高于常用的al2o3(2054℃)和sio2(1650±50℃),因此,氧化镁制品具有良好的化学稳定性、高的电阻率以及对金属、熔渣和碱性溶液有较强的抗侵蚀能力等特性。与常用的陶瓷材料相比,mgo与镁及其合金熔体具有很好的高温化学稳定性,与熔融的氯盐和氟酸盐组成的熔剂夹渣不发生反应,并且与熔剂夹杂润湿角较小而容易吸附镁熔体中的熔剂夹杂,因此,mgo材质泡沫陶瓷是镁合金液熔炼净化的理想材料。

在低于氧化物组成的熔点温度之下进行烧成是制备陶瓷材料所必须的、最关键的步骤,而在高温下所发生的烧结、晶粒长大等过程决定着陶瓷材料的显微组织和性能。中国专利文献cn1011306b(纯氧化镁泡沫陶瓷过滤器及其制取工艺)、cn101138691a(铸造用镁质泡沫陶瓷过滤器的制备方法)等以纯氧化镁为原料制备泡沫陶瓷,因mgo具有很高的熔点和热膨胀系数(13.5×10-6/℃)高,因此,导致其烧结困难(烧结温度不低于其熔点的0.8倍)和抗热震性较差,限制了mgo泡沫陶瓷的应用与发展。

研究表明:在烧结陶瓷过程中烧成温度每降低100℃,单位产品热耗会降低10%以上,通过添加烧结助剂是降低mgo泡沫陶瓷烧结温度的重要技术手段。添加v2o5粉体时,mgo在1190℃时会与v2o5形成近似组成为mg3v2o8的液相,促进烧结,能够显著降低mgo泡沫陶瓷的烧结温度,但是v2o5在使用过程中对呼吸系统和皮肤有损害作用,对操作有严格的限制。与v2o5相同,氧化钴也是良好的低温烧结助剂,但作为高毒物质和稀有资源也限制了应用。氟化物是陶瓷工业烧结中常用的强助溶剂和矿化剂,中国专利文献cn100536986c(氧化镁质泡沫陶瓷过滤器)、cn1473947a(镁和镁合金熔体净化用泡沫陶瓷)、cn101785944b(用于镁和镁熔体过滤用氧化镁泡沫陶瓷过滤器的制备方法)中添加萤石(熔点1423℃)及氟化镁(熔点1248℃),在烧结过程中氟化物的固溶不仅增大了基体氧化镁的晶格畸变,而且本身易形成低熔点液相,从而降低氧化镁陶瓷的烧结温度;然而,在烧结过程中氟化物中的f与si、al、fe、ca结合,大部分(在瓷砖生产中约占70%)以气态形式挥发不仅本身侵蚀坯体而损害烧结陶瓷的质量,更为严重的是排放到大气中会造成氟化物污染,氟化物可经呼吸道、消化道及皮肤进入人体,对中枢神经系统、心肌有毒性作用,低浓度氟污染会导致牙齿和骨骼脆钙化,《陶瓷工业污染物排放标准》(gb25464-2010)中规定氟化物的排放标准必须低于5.0mg/m3,以氟化物作为氧化镁陶瓷的低温烧结助剂必然增加气态氟化物的排放并加重环保投入负担;另外,陶瓷中残留的固溶氟化物中氟离子是以取代氧离子的形式存在,造成晶粒间结合的化学稳定性降低,难以抵抗镁熔体中熔剂夹杂的长时间侵蚀。中国专利文献cn101138691a等公开的泡沫陶瓷过滤器的制备浆料中采用水玻璃、硅溶胶及硅酸乙酯作为粘接剂,烧结的泡沫陶瓷颗粒间sio2成分的存在,使其易与镁及其合金熔体按(4)式反应,同样降低了泡沫陶瓷的化学稳定性。中国专利文献cn100536986c(氧化镁质泡沫陶瓷过滤器)、cn103553686a(一种镁铝尖晶石质泡沫陶瓷过滤器及其制备方法)等专利文献中,三氧化二硼及硼砂作为氧化镁陶瓷的低温烧结助剂,三氧化二硼高于450℃时即形成液相,在烧结温度超过1350℃时,与氧化镁反应生成硼酸镁以液相形式存在而降低了烧结温度。然而,三氧化二硼易与镁、铝反应,在镁、铝合金熔体中并不稳定;同时,由于三氧化二硼溶于水和乙醇等溶剂,在空气中可强烈地吸水生成硼酸,在泡沫陶瓷的制备过程中添加的三氧化二硼溶于水形成硼酸水溶液,易与氧化镁反应形成硼酸镁沉淀而降低其作用。氧化镓是三氧化二硼的同族氧化物,在较低的温度下与氧化镁形成尖晶石型的mgga2o4而起到降低烧结温度的作用,但镓资源量很少(镓是战略储备金属),氧化镓较高的价格限制了其在普通陶瓷中的应用。



技术实现要素:

本发明的目的是提供一种能在低温下实现烧结的、化学稳定性和抗热震性优异的mg(al,cr)2o4复合尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法。

为了达到上述技术目的,本发明的技术方案是:

一种mg(al,cr)2o4复合尖晶石增强氧化镁基泡沫陶瓷过滤器,将含纳米三氧化二铬烧结助剂的轻烧氧化镁基陶瓷浆料涂覆在聚氨酯泡沫载体上,经干燥、烧结得到。

一种mg(al,cr)2o4复合尖晶石增强氧化镁基泡沫陶瓷过滤器的制备方法,包括以下步骤:

(1)按照质量百分比将15%~25%纳米铝溶胶,0.8%~1.5%流变剂,其余为含纳米三氧化二铬烧结助剂的氧化镁陶瓷粉料进行配料,添加无水乙醇球磨混合均匀后制成固含量为60%~70%的陶瓷浆料。加入的纳米铝溶胶不仅能够起到粘结剂的作用,而且与高度均匀分散到氧化镁粉体颗粒中的纳米cr2o3一起与mgo原位反应生成对镁及其合金熔体具有化学稳定性的mg(al,cr)2o4复合尖晶石相,避免了现有产品加入硅溶胶、硅酸乙酯等粘结剂对泡沫陶瓷化学稳定性的损害。

所述流变剂为聚乙烯醇缩丁醛和纤维素醚的混合物,其中所述聚乙烯醇缩丁醛占流变剂质量的50%,所述纤维素醚为工业用羟丙基甲基纤维素、羟乙基纤维素中的一种或其混合物。纤维素醚和聚乙烯醇缩丁醛不但是纳米三氧化二铬粉体的良好分散剂,能够防止浆料产生团聚现象,而且在制备素坯时能起到粘接剂的作用,浸渍后浆料能比较地牢固附着在聚氨酯泡沫模板上使素坯具有很大的强度,同时在烧结过程中极易逸出而不污染制品。流变剂中不采用羧甲基纤维素钠等含纳的盐类,避免了残留的离子半径较大的na+对陶瓷烧结的阻碍,也避免了cr2o3在碱性氧化物na2o、k2o存在时cr3+转化为对人类健康有严重危害的cr6+所带来的环保问题。

所述陶瓷粉料为轻烧氧化镁和纳米三氧化二铬的混合物。其中,所述纳米三氧化二铬占陶瓷粉料质量的1%~2%,所述纳米三氧化二铬的粒径为30~60nm。所述轻烧氧化镁粉体的粒径为250目~500目(中径d50为25μm~58μm)。

采用的轻烧氧化镁细粉本身具有很高的烧结活性,纳米铝溶胶和纳米三氧化二铬在烧结过程中能够固溶到mgo晶格中使mgo晶体发生晶格畸变,活化晶格,同时通过与mgo颗粒间反应烧结生成mg(al,cr)2o4复合尖晶石相相,从而促进了烧结和颗粒相间的结合。另一方面,纳米粉体具有比表面积大、表面能高、高活性等特点,以纳米铝溶胶和纳米三氧化二铬的形式加入低温烧结助剂,优化陶瓷颗粒级配和混合均匀性,同时纳米粉体因其自身的表面和界面效应,纳米烧结助剂与mgo颗粒间的充分接触使生成尖晶石相的反应速度迅速提高,从而进一步降低了烧结温度,而烧结温度的降低有利于降低能耗和泡沫陶瓷过滤器的生产成本。

加入纳米cr2o3,陶瓷粉料中氧化镁细粉与铝溶胶及纳米cr2o3之间有着广泛的接触面,cr3+向mgo中扩散速度快,使方镁石mgo尖晶石化,同时还有促进al2o3向mgo中扩散的作用,因此,原位反应生成的mgal2o4和mgcro4与方镁石固溶体间有紧密连续的结合界面。mgal2o4与mgcro4具有无限互溶性,mgo颗粒与周围形成的mg(al,cr)2o4复合尖晶石相直接结合在一起,同时复合尖晶石相的钉扎作用抑制了氧化镁颗粒的生长,从而细化了泡沫陶瓷的组织并提高了陶瓷晶粒间的致密度,因此,所制备的mg(al,cr)2o4复合尖晶石增强氧化镁泡沫陶瓷过滤器具有较高的力学性能。另一方面,在烧成时离子交换扩散合成了尖晶石固溶体,由于al3+扩散速度比mg2+和cr3+慢,使氧化镁颗粒和mgo/复合尖晶石结合基质之间的界面上产生了al2o3的浓度梯度,同时,又由于它们的热膨胀系数不同便导致氧化镁颗粒和mgo/复合尖晶石结合基质之间的界面处产生了裂隙。同时,复合尖晶石固溶体通常呈夹层存在于方镁石晶体之间,它可以补偿各相界面上的应力,使冷却过程中产生的热应力得到松弛,并阻止裂纹的扩展。

作为优选,所述纳米铝溶胶固含量为20%~25%,其ph值≥4。

所述陶瓷浆料的制备方法为:按照配比将轻烧氧化镁粉料加入球磨罐中,将纳米铝溶胶、纳米三氧化二铬、流变剂及无水乙醇混合并超声处理30min~60min,使纳米氧化镧粉体充分分散后加入到球磨罐内,再按照球料比2:1的比例加入刚玉球,以60~120rpm转速球磨2h~4h使其混合均匀得到。通过naoh刻蚀使其表面粗糙化,再通过十二烷基苯磺酸盐润湿剂的水溶液处理后,陶瓷浆料易于均匀涂挂到聚氨酯泡沫模板上。

(2)将聚氨酯泡沫塑料模版浸入到陶瓷浆料中,通过辊压机挤压聚氨酯泡沫塑料模版去除多余的浸挂浆料后制成素坯,然后在40℃~50℃通风室去除乙醇溶剂使素坯干燥。

所述聚氨酯泡沫塑料模版规格为10ppi~20ppi(poresperinch,单位英寸长度上的平均孔数);使用前在40℃~50℃的15%~20%naoh水溶液中浸泡表面刻蚀40min~60min后用清水洗涤自然晾干,然后浸入到2%~4%十二烷基苯磺酸润湿剂的水溶液中后取出干燥后得到。通过naoh刻蚀使其表面粗糙化,再通过十二烷基苯磺酸盐润湿剂的水溶液处理后,陶瓷浆料易于均匀涂挂到聚氨酯泡沫模板上。

(3)将干燥的素坯放入烧结炉内,升温至1350℃~1550℃温度下进行高温烧结,随炉冷却至室温得到氧化镁基泡沫陶瓷过滤器。

所述烧结工艺是以30℃/h的升温速度加热至550℃使泡沫陶瓷过滤器素坯内的有机物(聚氨酯泡沫及流变剂等)分解气化排出,然后以200℃/h的升温速度加热至1100℃温度,在低温烧结阶段,较低的升温速度可以防止聚氨酯泡沫及流变剂分解速度过快导致素坯塌陷或变形损坏。最后以50℃/h的升温速度加热至1350℃~1550℃温度并在该温度下保温2~3h。在高温烧结阶段,烧结温度超过1100℃后,较低的升温速度可以保证烧结体内的温度一致,同时避免生成尖晶石的生成速度均匀并且避免过快产生的相变应力造成烧结体变形和开裂。

本发明所提供的氧化镁基泡沫陶瓷过滤器的制备方法具有工艺简单、成本低、效率高、适合规模化生产等优点,所制备的氧化镁基泡沫陶瓷过滤器不含任何降低其化学稳定性的组分,所加入的纳米铝溶胶和纳米三氧化二铬不仅能够起到降低烧结温度的作用,而且高度均匀分散到氧化镁陶瓷粉体颗粒中并与之反应生成对镁及其合金熔体具有化学稳定性的mg(al,cr)2o4复合尖晶石相将氧化镁颗粒熔接在一起,因此,泡沫陶瓷过滤器具有良好的强度、化学稳定性和抗热震性,特别适用于过滤净化镁及其合金熔体中的夹杂物,亦可用于铝及其合金熔体过滤净化。与现有的技术方案相比,本发明的技术效果:

一、本发明的mg(al,cr)2o4复合尖晶石增强氧化镁泡沫陶瓷过滤器具有优异的化学稳定性。铬离子半径比镁离子半径小,cr2o3具有α-al2o3结构,在方镁石mgo中的固溶度比al2o3大。添加的纳米cr2o3极易向mgo相内固溶扩散,通过反应烧结生成具有高温稳定性的镁铬尖晶石(mgcr2o4)相(熔点2180℃)。虽然原料组分铝溶胶中含有与镁液反应的al2o3,但添加的纳米铝溶胶在轻烧氧化镁颗粒及高度均匀分散的纳米cr2o3粉体表面形成γ-al2o3包覆膜,在烧结过程中和mgo原位反应生成具有面心立方晶格的高熔点镁铝尖晶石(mgal2o4)相(熔点2135℃)。mgal2o4与mgcro4可以完全互溶,根据xrd分析结果表明,本发明所制备的泡沫陶瓷过滤器只有方镁石mgo和mgal2o4-mgcr2o4复合尖晶石相。

在镁熔体与添加氧化铝的mgo-al2o3烧结陶瓷的反应体系中,除存在反应式(1)外,还可能存在如下反应:

3mg(l)+4al2o3(s)=3mgal2o4(s)+2al(l)(5)

氧化铝与氧化镁生成镁铝尖晶石mgal2o4的反应为:

mgo(s)+al2o3(s)=mgal2o4(s)(6)

镁熔体与镁铝尖晶石mgal2o4发生的反应为:

3mg(l)+mgal2o4(s)=2al(l)+4mgo(s)(7)

根据《纯物质热化学数据手册》(伊赫桑·巴伦主编,程乃良等译,北京:科学出版社,2003年),在900~1200k时镁熔体与镁铝尖晶石反应体系的物质gibbs自由能数据和反应(1)、(5)、(6)和(7)的gibbs自由能变化δg1、δg5、δg6、δg7的计算结果如表1所示。

表1在900~1200k镁熔体与镁铝尖晶石反应体系中各个反应的吉布斯自由能变化δg计算结果

反应式镁熔体与氧化铝生成镁铝尖晶石的(5)式的gibbs自由能δg5在不同温度下均最小,说明在镁合金的常用熔炼温度下该反应会优先发生。镁液与镁铝尖晶石的反应式(7)尽管从热力学上是可以进行的,但该反应本质上为镁液与镁铝尖晶石的分解产物氧化铝间反应,但由表1可知,在镁合金的熔炼温度下,镁铝尖晶石分解为氧化铝和氧化镁的反应难以进行(反应式(6)的逆反应),同时烧结的陶瓷中残留的氧化铝也会与镁液优先按反应式(5)生成镁铝尖晶石;另一方面,mgo-al2o3相图中mgo一侧为方镁石固溶体和ma尖晶石固溶体共晶相图,在原位反应生成ma过程中几乎没有o2-扩散,只有mg2+和al3+通过固定的氧晶格相互扩散,其生成速度由扩散较慢的al3+所决定,ma相主要在al2o3一侧通过内延生长方式生成,导致在ma相与mgo间形成有限固溶体,同时与mgo颗粒接触的ma外层中mgo含量远高于其平均值,而mgo并不与镁熔体反应,因此,烧结陶瓷组织中将氧化镁颗粒熔接在一起的镁铝尖晶石相在镁熔体中是能够稳定存在。

本发明的mg(al,cr)2o4复合尖晶石氧化镁泡沫陶瓷过滤器中不含任何降低其化学稳定性的组分,加入的纳米铝溶胶不仅能够起到粘结剂的作用,而且与高度均匀分散到氧化镁粉体颗粒中的纳米cr2o3一起与mgo原位反应生成对镁及其合金熔体具有化学稳定性的mg(al,cr)2o4复合尖晶石相,避免了现有产品加入硅溶胶、硅酸乙酯等粘结剂对泡沫陶瓷化学稳定性的损害;同时,陶瓷组分中亦不含钠盐(如流变剂中不采用羧甲基纤维素钠),避免了残留的离子半径较大的na+对陶瓷烧结的阻碍,也避免了cr2o3在碱性氧化物na2o、k2o存在时cr3+转化为对人类健康有严重危害的cr6+所带来的环保问题。

因反应式(1)、(5)在镁合金的常用熔炼温度下能够自发进行,而铝及其合金的熔炼温度与镁及其合金熔炼温度相同,mgo和ma尖晶石相与铝及其合金熔体不会发生反应式(1)、(5)的逆反应;与用于镁及其合金熔体相同,避免了加入硅溶胶、硅酸乙酯等粘结剂对泡沫陶瓷在铝及其合金熔体中化学稳定性的损害(即使材质中含有1%的sio2,铝及其合金熔体在高温下也会和陶瓷中sio2发生al+sio2→al2o3+si的反应);因此,所制备的mg(al,cr)2o4复合尖晶石氧化镁泡沫陶瓷过滤器亦可以用于铝及其合金的熔炼净化。

二、本发明的mg(al,cr)2o4复合尖晶石增强氧化镁泡沫陶瓷过滤器具有良好的低温烧结性能。本发明所采用的轻烧氧化镁细粉本身具有很高的烧结活性,纳米铝溶胶和纳米三氧化二铬在烧结过程中能够固溶到mgo晶格中使mgo晶体发生晶格畸变,活化晶格,同时通过与mgo颗粒间反应烧结生成mg(al,cr)2o4复合尖晶石相相,从而促进了烧结和颗粒相间的结合。另一方面,纳米粉体具有比表面积大、表面能高、高活性等特点,以纳米铝溶胶和纳米三氧化二铬的形式加入低温烧结助剂,优化陶瓷颗粒级配和混合均匀性,同时纳米粉体因其自身的表面和界面效应,纳米烧结助剂与mgo颗粒间的充分接触使生成尖晶石相的反应速度迅速提高,从而进一步降低了烧结温度,而烧结温度的降低有利于降低能耗和泡沫陶瓷过滤器的生产成本。试验结果表明,烧结温度低于1350℃时氧化镁颗粒间烧结组织结合不够充分致使其强度偏低,组织结合良好的mg(al,cr)2o4复合尖晶石增强氧化镁泡沫陶瓷过滤器的烧结温度为1350℃~1550℃。

三、本发明的mg(al,cr)2o4复合尖晶石增强氧化镁泡沫陶瓷过滤器具有良好的抗热震性。铝溶胶中固相成分为高活性的多孔γ-al2o3,与镁铝尖晶石ma晶体结构相同。在本发明所提供的方案中,高烧结活性的轻烧氧化镁颗粒被连续的纳米铝溶胶膜包围,在烧结过程中原位反应生成镁铝尖晶石ma相。cr2o3在方镁石mgo中的溶解度大于al2o3,1600℃时cr2o3和al2o3在方镁石中的有效溶解度大约分别为11%和1%。加入纳米cr2o3,陶瓷粉料中氧化镁细粉与铝溶胶及纳米cr2o3之间有着广泛的接触面,cr3+向mgo中扩散速度快,使方镁石mgo尖晶石化,同时还有促进al2o3向mgo中扩散的作用,因此,原位反应生成的mgal2o4和mgcro4与方镁石固溶体间有紧密连续的结合界面。mgal2o4与mgcro4具有无限互溶性,mgo颗粒与周围形成的mg(al,cr)2o4复合尖晶石相直接结合在一起,同时复合尖晶石相的钉扎作用抑制了氧化镁颗粒的生长,从而细化了泡沫陶瓷的组织并提高了陶瓷晶粒间的致密度,因此,所制备的mg(al,cr)2o4复合尖晶石增强氧化镁泡沫陶瓷过滤器具有较高的力学性能。另一方面,在烧成时离子交换扩散合成了尖晶石固溶体,由于al3+扩散速度比mg2+和cr3+慢,使氧化镁颗粒和mgo/复合尖晶石结合基质之间的界面上产生了al2o3的浓度梯度,同时,又由于它们的热膨胀系数不同便导致氧化镁颗粒和mgo/复合尖晶石结合基质之间的界面处产生了裂隙。同时,复合尖晶石固溶体通常呈夹层存在于方镁石晶体之间,它可以补偿各相界面上的应力,使冷却过程中产生的热应力得到松弛,并阻止裂纹的扩展,因此,提高了所制备的泡沫陶瓷过滤器材料的耐高温冲击和抗热震性。

此外,本发明制备方法中聚氨酯泡沫塑料模板通过naoh刻蚀使其表面粗糙化,再通过十二烷基苯磺酸盐润湿剂的水溶液处理后,陶瓷浆料易于均匀涂挂到聚氨酯泡沫模板上;同时作为流变剂的纤维素醚和聚乙烯醇缩丁醛不但是纳米三氧化二铬粉体的良好分散剂,能够防止浆料产生团聚现象,而且在制备素坯时能起到粘接剂的作用,浸渍后浆料能比较地牢固附着在聚氨酯泡沫模板上使素坯具有很大的强度,同时在烧结过程中极易逸出而不污染制品,因而保证了泡沫陶瓷过滤器的质量。

附图说明

图1为mg(al,cr)2o4复合尖晶石增强氧化镁基泡沫陶瓷过滤器的制备工艺流程图。

具体实施方式

下面结合附图和具体实施方式对本发明作进一步详细的说明。

mg(al,cr)2o4复合尖晶石增强氧化镁基泡沫陶瓷过滤器,将含纳米三氧化二铬烧结助剂的轻烧氧化镁基陶瓷浆料涂覆在聚氨酯泡沫载体上,经干燥、烧结得到。具体的制备工艺如图1所示。

实施例1

按照纳米三氧化二铬占陶瓷粉料质量的1%的配比,将粒径为30nm的纳米三氧化二铬和粒径为250目(中径d50为58μm)的轻烧氧化镁粉体混合配制陶瓷粉料;按照聚乙烯醇缩丁醛和羟丙基甲基纤维素的质量比为1:1的比例混合配制流变剂。

按照质量百分比将固含量为25%的纳米铝溶胶25%(选择ph值近中性的商业化纳米铝溶胶,下同),流变剂0.8%,其余为陶瓷粉料进行配料。首先按照配比将轻烧氧化镁粉料加入球磨罐中,将纳米铝溶胶、纳米三氧化二铬、流变剂及适量的无水乙醇(根据陶瓷浆料的固含量确定其加入量,下同)混合并超声处理30min,使纳米氧化镧粉体充分分散后加入到球磨罐内,再按照球料比2:1的比例加入刚玉球,以60rpm转速球磨4h使其混合均匀得到固含量为60%的陶瓷浆料。

选用10ppi聚氨酯泡沫塑料模版,在40℃的15%naoh水溶液中浸泡表面刻蚀60min后用清水洗涤自然晾干,然后浸入到2%十二烷基苯磺酸润湿剂的水溶液中,取出干燥。然后将聚氨酯泡沫塑料模版浸入到陶瓷浆料中,通过辊压机挤压聚氨酯泡沫塑料模版去除多余的浸挂浆料后制成素坯,然后在40℃通风室去除乙醇溶剂使素坯干燥,乙醇溶剂可通过回收装置回收。

将干燥的素坯放入烧结炉内,以30℃/h的升温速度加热至550℃使泡沫陶瓷过滤器素坯内的聚氨酯泡沫及流变剂等有机物分解气化排出,然后以200℃/h的升温速度加热至1100℃温度,最后以50℃/h的升温速度加热至1550℃温度并在该温度下保温2.5h,随炉冷却至室温得到氧化镁基泡沫陶瓷过滤器。

实施例2

按照纳米三氧化二铬占陶瓷粉料质量的2%的配比,将粒径为60nm的纳米三氧化二铬和粒径为500目(中径d50为25μm)的轻烧氧化镁粉体混合配制陶瓷粉料;按照聚乙烯醇缩丁醛和羟丙基甲基纤维素的质量比为1:1的比例混合配制流变剂。

按照质量百分比将固含量为20%的纳米铝溶胶15%,流变剂1.5%,其余为陶瓷粉料进行配料。首先按照配比将轻烧氧化镁粉料加入球磨罐中,将纳米铝溶胶、纳米三氧化二铬、流变剂及适量的无水乙醇混合并超声处理60min,使纳米氧化镧粉体充分分散后加入到球磨罐内,再按照球料比2:1的比例加入刚玉球,以120rpm转速球磨2h使其混合均匀得到固含量为65%的陶瓷浆料。

选用20ppi聚氨酯泡沫塑料模版,在50℃的20%naoh水溶液中浸泡表面刻蚀40min后用清水洗涤自然晾干,然后浸入到4%十二烷基苯磺酸润湿剂的水溶液中,取出干燥。然后将聚氨酯泡沫塑料模版浸入到陶瓷浆料中,通过辊压机挤压聚氨酯泡沫塑料模版去除多余的浸挂浆料后制成素坯,然后在50℃通风室去除乙醇溶剂使素坯干燥。

将干燥的素坯放入烧结炉内,以30℃/h的升温速度加热至550℃使泡沫陶瓷过滤器素坯内的聚氨酯泡沫及流变剂等有机物分解气化排出,然后以200℃/h的升温速度加热至1100℃温度,最后以50℃/h的升温速度加热至1350℃温度并在该温度下保温3h,随炉冷却至室温得到氧化镁基泡沫陶瓷过滤器。

实施例3

按照纳米三氧化二铬占陶瓷粉料质量的1.5%的配比,将粒径为50nm的纳米三氧化二铬和粒径为325目(中径d50为45μm)的轻烧氧化镁粉体混合配制陶瓷粉料;按照聚乙烯醇缩丁醛和羟乙基纤维素的质量比为1:1的比例混合配制流变剂。

按照质量百分比将固含量为22%的纳米铝溶胶20%,流变剂1.0%,其余为陶瓷粉料进行配料。首先按照配比将轻烧氧化镁粉料加入球磨罐中,将纳米铝溶胶、纳米三氧化二铬、流变剂及适量的无水乙醇混合并超声处理45min,使纳米氧化镧粉体充分分散后加入到球磨罐内,再按照球料比2:1的比例加入刚玉球,以90rpm转速球磨3h使其混合均匀得到固含量为70%的陶瓷浆料。

选用15ppi聚氨酯泡沫塑料模版,在45℃的18%naoh水溶液中浸泡表面刻蚀50min后用清水洗涤自然晾干,然后浸入到3%十二烷基苯磺酸润湿剂的水溶液中,取出干燥。然后将聚氨酯泡沫塑料模版浸入到陶瓷浆料中,通过辊压机挤压聚氨酯泡沫塑料模版去除多余的浸挂浆料后制成素坯,然后在45℃通风室去除乙醇溶剂使素坯干燥。

将干燥的素坯放入烧结炉内,以30℃/h的升温速度加热至550℃使泡沫陶瓷过滤器素坯内的聚氨酯泡沫及流变剂等有机物分解气化排出,然后以200℃/h的升温速度加热至1100℃温度,最后以50℃/h的升温速度加热至1450℃温度并在该温度下保温2h,随炉冷却至室温得到氧化镁基泡沫陶瓷过滤器。

实施例4

按照纳米三氧化二铬占陶瓷粉料质量的1%的配比,将粒径为60nm的纳米三氧化二铬和粒径为300目(中径d50为48μm)的轻烧氧化镁粉体混合配制陶瓷粉料;按照聚乙烯醇缩丁醛:羟丙基甲基纤维素:羟乙基纤维素的质量比为5:2:3的比例混合配制流变剂。

按照质量百分比将固含量为20%的纳米铝溶胶25%,流变剂1.0%,其余为陶瓷粉料进行配料。首先按照配比将轻烧氧化镁粉料加入球磨罐中,将纳米铝溶胶、纳米三氧化二铬、流变剂及适量的无水乙醇混合并超声处理45min,使纳米氧化镧粉体充分分散后加入到球磨罐内,再按照球料比2:1的比例加入刚玉球,以100rpm转速球磨3h使其混合均匀得到固含量为65%的陶瓷浆料。

选用15ppi聚氨酯泡沫塑料模版,在45℃的15%naoh水溶液中浸泡表面刻蚀50min后用清水洗涤自然晾干,然后浸入到4%十二烷基苯磺酸润湿剂的水溶液中,取出干燥。然后将聚氨酯泡沫塑料模版浸入到陶瓷浆料中,通过辊压机挤压聚氨酯泡沫塑料模版去除多余的浸挂浆料后制成素坯,然后在45℃通风室去除乙醇溶剂使素坯干燥。

将干燥的素坯放入烧结炉内,以30℃/h的升温速度加热至550℃使泡沫陶瓷过滤器素坯内的聚氨酯泡沫及流变剂等有机物分解气化排出,然后以200℃/h的升温速度加热至1100℃温度,最后以50℃/h的升温速度加热至1500℃温度并在该温度下保温2h,随炉冷却至室温得到氧化镁基泡沫陶瓷过滤器。

上述实施例中,实验表明所制备的泡沫陶瓷具有优异的抗热震性和强度,在900℃空气中冷却50次均未见开裂;75mm×75mm×25mm,10ppi的泡沫陶瓷过滤器的常温强度不低于2mpa。

上述实施例不以任何方式限制本发明,凡是采用等同替换或等效变换的方式获得的技术方案均落在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1