一种稻田土壤调理剂及其使用方法与流程

文档序号:16523834发布日期:2019-01-05 10:10阅读:1026来源:国知局
一种稻田土壤调理剂及其使用方法与流程

本发明涉及稻田重金属污染治理技术领域,特别涉及一种降低稻田土壤重金属有效性和水稻吸收量的调理剂及其使用方法。



背景技术:

水稻是我国最重要的粮食作物,稻田受重金属污染后,水稻生长发育便会受阻,乃至绝产,更为严重的是,土壤中的重金属如果被水稻吸收并在籽粒中积累,便会通过食物进入人体,不仅降低了稻米的食用品质,而且威胁着人类健康。稻田土壤主要污染物为重金属cd,cd主要以可交换态和碳酸盐结合态存在,迁移性强,容易被水稻等农作物吸收。日本因农田cd污染引发的“痛痛病”早已受到国际社会的广泛关注。水稻土酸化及土壤mn的流失均会导致稻米cd含量超标。近年来,由于劳动力成本增加和稻米cd含量超标事件的发生,我国部分地区出现了双季稻改单季稻、超量施用化肥、水稻田改菜地等,进一步加剧了土壤重金属污染的危害。

钢铁渣作为炼钢副产品具有许多优良特性,其含有的大量碱性物质不仅能够快速中和土壤酸性物质,而且还含有酸性土壤中缺少的钙和镁,以及对水稻生长有益的元素硅,是优良的土壤调理剂原料。

目前,现有技术是添加石灰类等碱性物质改善土壤酸度,可有效降低重金属活性及水稻吸收量,然而施用量过高或长期施用会降低其他养分(如磷和微量元素锌等)有效性,从而影响作物产量。



技术实现要素:

本发明针对现有技术的缺陷,提供了一种稻田土壤调理剂及其使用方法,能有效的解决上述现有技术存在的问题。

为了实现以上发明目的,本发明采取的技术方案如下:

一种稻田土壤调理剂,其原料包括:硅含量13~15%、钙含量27~28%、镁含量6~7%、氮含量0.03~0.05%、五氧化二磷含量1~2%、氧化钾0.4~0.5%和粪肥含量38~39%;调理剂ph值为10~11。

作为优选,调理剂原料包括:硅含量14.62%、钙含量27.88%、镁含量6.28%、氮含量0.03%、五氧化二磷含量1.43%、氧化钾0.42%和粪肥38.89%;调理剂ph值为10.45。

基于上述调理剂的使用方法,包括以下步骤:

步骤1,将筛选适合作为土壤调理剂原料的钢铁渣磨碎细化、养分浓缩并活化,去除重金属,与粪肥混合,充分混匀过100目筛,制得调理剂。

步骤2,将调理剂作与肥料混合,配比为:

氮肥200mg/kg、磷肥100mg/kg、钾肥150mg/kg、调理剂11~12g/kg。

步骤3,将混合后的肥料撒施于土壤中。

作为优选,调理剂作与肥料混合,配比为:氮肥200mg/kg、磷肥100mg/kg、钾肥150mg/kg、调理剂11.76g/kg。

与现有技术相比本发明的优点在于:提高了土壤ph,提高了土壤中微量养分元素含量(钙、镁、硅等),提高土壤养分保蓄能力,又降低土壤重金属有效性和水稻吸收。将调理剂与化学氮磷钾肥料以一定比例配施,降低重金属活性、促进水稻生长。

附图说明

图1为本发明实施例中不同用量调理剂对土壤ph的影响柱形图;

图2为本发明实施例中不同用量调理剂对土壤有效硅的影响柱形图;

图3为本发明实施例不同用量调理剂对稻田土壤有效隔含量的影响柱形图;

图4为本发明实施例中不同用量调理剂对水稻隔含量的影响柱形图。

具体实施方式

为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图并列举实施例,对本发明做进一步详细说明。

调理剂ⅰ原料为:

硅含量14.62%、钙含量27.88%、镁含量6.28%、氮含量0.03%、五氧化二磷含量1.43%、氧化钾0.42%、粪肥38.89%;调理剂ⅰph为10.45;

调理剂ⅱ原料为:硅含量2.34%、钙含量5.07%、镁含量3.37%、氮含量0.94%、五氧化二磷含量0.38%、氧化钾0.36%、机物料79.60%,调理剂ⅱph7.94。

肥料与调理剂配比:

1(对照,npk):氮肥200mgn/kg、磷肥100mgp2o5/kg、钾肥150mgk2o/kg,不添加调理剂

2(低量调理剂ⅰ,npk+wl):氮肥200mgn/kg、磷肥100mgp2o5/kg、钾肥150mgk2o/kg,调理剂ⅰ2.94g/kg;

3(高量调理剂ⅰ,npk+wh):氮肥200mgn/kg、磷肥100mgp2o5/kg、钾肥150mgk2o/kg,调理剂ⅰ11.76g/kg;

4(低量调理剂ⅱ,npk+yl):氮肥200mgn/kg、磷肥100mgp2o5/kg、钾肥150mgk2o/kg,调理剂ⅱ5.88g/kg;

5(高量调理剂ⅱ,npk+yh):氮肥200mgn/kg、磷肥100mgp2o5/kg、钾肥150mgk2o/kg,调理剂ⅱ23.52g/kg。

两种土壤调理剂及其施用量对土壤ph值的影响如图1所示。与对照npk处理相比,npk+wl和npk+wh分别显著提高0.64和1.02个单位(p<0.05),npk+yl和npk+yh分别显著提高0.27和0.56个单位(p<0.05)。可见,施用调理剂ⅰ和ⅱ对于提高土壤ph值效果显著,施用高量土壤调理剂提升幅度大于施用低量调理剂,其中施用高量调理剂ⅰ提升幅度最大。

如图2所示,与对照npk处理相比,施用调理剂ⅰ可以显著提高土壤有效硅含量,且随调理剂ⅰ施用量的增加呈上升趋势,npk+wh处理土壤有效硅含量显著提高2181.75%(p<0.05),npk+wl处理显著提高505.49%(p<0.05);施用调理剂ⅱ的处理土壤有效硅含量无显著变化。施用调理剂ⅰ的处理土壤有效硅含量显著高于施用调理剂ⅱ的处理。可见,施用调理剂ⅰ对于提高土壤有效硅含量效果显著,施用调理剂ⅱ对于提高土壤有效硅含量效果不显著。

两种土壤调理剂及其施用量对土壤有效镉含量的影响如图3所示。与对照npk处理相比,npk+wh处理土壤有效镉含量显著降低38.31%(p<0.05),npk+wl、npk+yl和npk+yh处理无显著变化。npk+wh土壤有效镉含量显著低于npk+wl、npk+yl和npk+yh。可见,施用高量调理剂ⅰ对于降低土壤有效镉含量效果显著,施用调理剂ⅱ或低量调理剂ⅰ对于降低土壤有效镉含量效果不显著。

如图4所示,与对照npk处理相比,npk+wl和npk+wh处理水稻籽粒中的镉含量分别降低26.36%和23.99%,npk+yl和npk+yh处理分别提高36.93%和55.90%,差异不显著;npk+wl和npk+wh处理水稻秸秆中的镉含量分别降低29.81%和22.49%,npk+yl处理提高5.09%,差异不显著,npk+yh显著提高38.29%(p<0.05)。可见,施用调理剂ⅰ可以降低水稻籽粒和秸秆中的镉含量,施用调理剂ⅱ增加了水稻籽粒和秸秆中的镉含量,且随调理剂施用量的增加,水稻镉含量有上升趋势。

从表1可以看出,土壤ph值与有效硅之间表现出极显著正相关关系,即土壤ph值随有效硅含量的增加而增加,决定系数r2为0.6638;土壤ph值与土壤重金属含量之间表现出显著负相关关系,即土壤ph值随土壤重金属含量的增加而降低,与有效镉之间达极显著水平,决定系数r2为0.649。土壤有效硅与重金属含量之间呈显著负相关关系,与有效镉之间达极显著水平,决定系数r2分别为0.814。可见调理剂通过增加土壤ph和有效硅含量,而降低隔的有效性。

表1土壤ph值与有效硅和重金属含量之间的相关性(r2)

综上所述,调理剂ⅰ对改良土壤酸度、增加土壤养分含量、降低重金属镉的有效性,及水稻吸镉效果显著,且以施用量为11.76g/kg效果最佳。

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1