一种阻热引流剂及其制备方法与流程

文档序号:16522404发布日期:2019-01-05 10:04阅读:632来源:国知局

本发明涉及冶金耐火材料技术领域,具体涉及一种阻热引流剂及其制备方法。



背景技术:

引流剂是一种耐高温、热稳定性好,用于填充钢包水口内部,保证钢包自动开浇的关键性耐火材料。为保证铸坯质量,炼钢企业在钢水浇铸时,力求钢包自动开浇,避免烧氧引流而造成钢水二次氧化、夹杂等质量问题;尤其对于质量要求较高的品种钢来说,一次烧氧引流甚至能造成整炉钢水降判或报废,给企业带来很大经济损失。因此,钢包自动开浇是保证铸钢作业顺利进行、提高铸坯质量的重要基础。

随着炼钢形势发展,相当部分钢企正向品种钢冶炼方向转变,品种钢钢水处理工艺复杂,须经过多重精炼工艺处理,从钢包受钢到铸钢开浇,钢水在钢包内压钢时间往往达到4-6个小时,部分钢种甚至接近8个小时。随着压钢时间的延长,钢水的热量向钢包水口内引流砂传递大幅度增加,造成水口内上部、中部过度烧结,烧结层加厚,耐压强度远远超过钢水静压力,导致钢包不能自动开浇,必须进行烧氧引流,严重影响品种钢水的品质。随着品种钢冶炼比例攀升,其高品质要求与低自动开浇率之间形成极大矛盾。

为解决压钢时间长的钢包自开率低问题,目前引流剂生产行业主要是从两方面着手:一方面是通过优化粒级搭配,保证材料均匀性和产品稳定性;另一方面是调整原材料配比,通过提高产品耐火度来改善钢包自开率问题。但造成压钢时间长的钢包不自开的根本原因是:高温持续时间长,热量向水口内部传递过多;加之当前常用的引流剂原材料热导率相对较高:900℃时,铬矿砂122.6w·(m·k)-1、石英砂77.4w·(m·k)-1、电熔镁砂123.5w·(m·k)-1,加剧了传热;双重因素叠加,导致水口内引流砂过度烧结堵塞水口,阻滞钢水自动流出。因此,压钢时间长钢包自动开浇率低仍是亟待解决的问题。

公开号为cn102114534a的专利文献公开了一种钢包用铬质引流砂及其制备方法,其技术方案是:先将50~70wt%的铬矿砂和20~40wt%的石英砂加入搅拌机中,搅拌2~3分钟;再将5~10wt%的钾长石加入该搅拌机中,搅拌5~10分钟;然后将1~2wt%的鳞片石墨加入该搅拌机中,搅拌10~15分钟;最后将搅拌均匀的四种物料从该搅拌机中倒出,在180~220℃条件下烘烤30~40min,即得钢包用铬质引流砂。该发明所制备的钢包用铬质引流砂具有耐火度高、高温烧结性能好、抗钢水和熔渣侵蚀性好、颗粒粒度分布均匀、流动性好、热膨胀率较小、成本适宜和自开率高的特点;钢水传搁时间≥2小时,自开率达到99.6%以上。但是在实际应用中,当传搁时间达到4小时以上时,由于高温持续时间长,钢包自开率波动较大,甚至出现大幅度降低现象,无法保证铸坯质量,远不能满足现有铸钢的实际需要。

公开号为cn103624246a的专利文献公开了一种连铸高铝钢用引流砂,按质量百分比包含作为骨架料的29~37%石英砂、作为基料的52~60%铬矿砂、作为添加剂的9~12%碳粉、作为粘结剂的0.5~2%酚醛树脂,并相混合均匀而成。该发明还公开了一种连铸高铝钢用引流砂的使用方法,为先对引流砂进行烘烤预处理,然后将引流砂加入至水口内,且超出水口座砖平面5~15mm。该引流剂仅对高铝钢,特别是20mn23aiv,其钢包自开率有明显的提高效果,而对其他钢种的钢包自开率提高不明显;对钢包精炼时间在200min以上的钢种,其钢包自开率有明显的提高效果,但是提高幅度较小,而且在精炼时间超过240min时,钢包自开率尽管较不使用该引流砂有所提高,但是依然不能达到90%以上。

公开号为cn101972847a的专利文献公开了一种特殊钢用铬质引流砂及其制备工艺,该特殊钢用铬质引流砂,按质量百分比包括:采用石英砂作为骨料28~33%,采用铬铁矿作为基质料62~70%,采用石墨粉作为添加剂1~1.5%,采用酚醛树脂作为结合剂0.5~1.5%。制备工艺:①在混炼设备中加入28~33%石英砂、0.5~1.5%结合剂酚醛树脂,搅拌,待石英砂颗粒完全被润湿后,加入1~1.5%石墨粉并搅拌,待石墨粉与石英砂颗粒混合均匀后,加入62~70%铬铁矿,继续搅拌均匀;②将上述混合好的铬质引流砂放入烘烤窑中烘烤,烘烤最高温度200℃,烘烤总时间为18小时;③去除烘烤后铬质引流砂中的假颗粒,并对产品颗粒进行筛分,使其具有适宜的堆积密度。该发明针对冶炼特殊钢的需要,研制了专用的铬质引流砂,使其自开率在90%以上,而对待钢时间较长的钢种自开率提高依然有限,有待进一步改善。



技术实现要素:

有鉴于此,本发明所要解决的技术问题是提供一种阻热引流剂及其制备工艺,利用膨胀珍珠岩热稳定性好、热导率极低的特性,与其他材料混合均匀后,在引流剂内部砂粒间形成阻热层;水口内引流剂与钢水接触区域会形成烧结层,而水口中、下部引流剂因阻热层的存在,即使压钢时间超长(接近8小时),受到的热传递量也不会明显增加,有效防止水口中、下部引流砂烧结现象产生,可彻底解决因压钢时间长导致的钢包不能自动开浇问题。

为解决上述技术问题,本发明所采用的技术方案是:

一种阻热引流剂,由下述重量份的原材料制成:铬矿砂0-70重量份、石英砂15-35重量份、电熔镁砂0-70重量份、膨胀珍珠岩10-30重量份、碳质材料1-3重量份、粘合剂0.3-1.0重量份。

优选地,所述铬矿砂含cr2o3的重量百分比≥45%,含fe2o3的重量百分比≤28%,含al2o3的重量百分比≤16%,粒度为0.2mm-0.9mm。

优选地,所述石英砂含sio2的重量百分比≥93%,粒度为0.2mm-1.0mm。

优选地,所述电熔镁砂砂含mgo的重量百分比≥95%,粒度为0.5mm-1.2mm。

优选地,所述石英砂为沙漠砂、沉积海砂和石英白砂中的一种或两种以上的组合物。

优选地,所述膨胀珍珠岩含sio2的重量百分比≥70%,含al2o3的重量百分比≤15%,含h2o的重量百分比≤0.1%,粒度为0.15mm-0.5mm。

优选地,所述膨胀珍珠岩的膨胀倍数>15。

优选地,所述碳质材料含固定碳的重量百分比≥95%,粒度小于200目,为鳞片石墨和炭黑中的一种或两种的组合物。

优选地,所述粘合剂为酚醛树脂和/或硅溶胶。

优选地,上述阻热引流剂的制备方法,包括以下步骤:

步骤s1:将铬矿砂、石英砂和电熔镁砂分别经滚筒烘干处理,所述烘干的送风温度为300℃-400℃,烘干后的原材料含水量<0.1%,分开储存;

步骤s2:将步骤1所得铬矿砂、石英砂和电熔镁砂,以及膨胀珍珠岩和粘合剂分别进行准确计量后,投放到筒式搅拌机中搅拌5-10分钟,加入碳质材料继续搅拌10-15分钟后下盘,得成品;

步骤s3:将所得成品传送至成品仓进行计量包装。

与现有技术相比,本发明的有益效果如下:

本发明引流剂以铬矿砂、石英砂、电熔镁砂等原材料为主要骨架原料,提供产品的耐火度;配入一定比例的膨胀珍珠岩混合均匀;加入粘合剂后附以碳质材料制备而成;所用原料铬矿砂、石英砂、膨胀珍珠岩以及碳质材料均来源广泛、矿源稳定;产品生产工艺无特殊要求。故成本经济性、生产可控性适合绝大多数引流剂生产企业。

本发明引流剂配入一定比例的膨胀珍珠岩,在钢包水口上部直接与钢水接触区域,可替代传统引流砂中碱性氧化物的功能,即:熔化成液态填充在其他颗粒间的缝隙,形成致密烧结层以防止钢液对水口内引流剂冲刷侵蚀和渗透;在钢包水口中、下部,利用膨胀珍珠岩热稳定性好、热导率极低的特性,与其他材料混合均匀后,在引流剂砂粒间形成阻热层,大幅度降低热传递量,使砂粒不烧结,呈散状。连铸开浇时水口中、下部引流剂顺利流出,钢液静压力即可压破水口上部烧结层实现自动开浇,可彻底解决因压钢时间长导致的钢包不能自动开浇问题。

具体实施方式

为了更好地理解本发明,下面结合实施例进一步清楚阐述本发明的内容,但本发明的保护内容不仅仅局限于下面的实施例。在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明可以无需一个或多个这些细节而得以实施。

本发明阻热引流剂以铬矿砂、石英砂、电熔镁砂等原材料为主要骨架原料,提供产品的耐火度;配入一定比例的膨胀珍珠岩混合均匀;加入粘合剂后附以碳质材料制备而成;具体的,所述阻热引流剂,由下述重量份的原材料制成:铬矿砂0-70重量份、石英砂15-35重量份、电熔镁砂0-70重量份、膨胀珍珠岩10-30重量份、碳质材料1-3重量份、粘合剂0.3-1.0重量份。

在本发明中,所述铬矿砂含cr2o3的重量百分比≥45%,含fe2o3的重量百分比≤28%,含al2o3的重量百分比≤16%,优选粒度为0.2mm-0.9mm。

在本发明中,所述石英砂含sio2的重量百分比≥93%,优选粒度为0.2mm-1.0mm。

在本发明中,所述石英砂为沙漠砂、沉积海砂和石英白砂中的一种或两种以上的组合物。

优选地,所述电熔镁砂砂含mgo的重量百分比≥95%,粒度为0.5mm-1.2mm。

在本发明中,所述膨胀珍珠岩含sio2的重量百分比≥70%,含al2o3的重量百分比≤15%,含h2o的重量百分比≤0.1%;所述膨胀珍珠岩的膨胀倍数>15;优选粒度为0.15mm-0.5mm。

此外,本发明引流剂所用膨胀珍珠岩是由珍珠岩在600℃焙烧制成的,耐火度<1400℃。

在本发明中,所述碳质材料含固定碳的重量百分比≥95%,优选粒度小于200目,为鳞片石墨和炭黑中的一种或两种的组合物。

在本发明中,所述粘合剂为酚醛树脂和/或硅溶胶。

本发明阻热引流剂,其有效成分的质量百分比为:cr2o30%-35%,sio220%-50%,mgo0%-70%,al2o30%-20%,fe2o30%-20%,固定碳0.5%-3%。

本发明还提供了上述阻热引流剂的制备方法,包括以下步骤:

步骤s1:将铬矿砂、石英砂和电熔镁砂分别经滚筒烘干处理,所述烘干的送风温度为300℃-400℃,烘干后的原材料含水量<0.1%,分开储存;

步骤s2:将步骤1所得铬矿砂、石英砂和电熔镁砂,以及膨胀珍珠岩和粘合剂分别进行准确计量后,投放到筒式搅拌机中搅拌5-10分钟,加入碳质材料继续搅拌10-15分钟后下盘,得成品;

步骤s3:将所得成品传送至成品仓进行计量包装。

表1阻热引流剂的原料及其重量份

注:表1中“-”表示未添加相应原料。

表2阻热引流剂实施例和对比例中各原料的化学成分及或物理指标

表3阻热引流剂的化学成分及其重量百分比

表4阻热引流剂的制备方法

表5阻热引流剂的应用情况

由表1-表5可知,对比例1:添加膨胀珍珠岩比例较低,砂粒内部没有形成有效阻热层;同时引流剂中铬矿砂比例高,整体导热率大,钢水传搁时间延长造成引流剂过度烧结,从而导致自开率降低至88.2%(见表5),达不到理想效果。对比例2和对比例5:未添加膨胀珍珠岩,砂粒内部无法形成阻热层,同时钢水处理过程最高温度达1750℃,加之钢水传搁时间相对较长,两因素导致热传递量过大,引流砂过度烧结,造成烧氧现象发生,使得自开率降低。对比例3、对比例4和对比例6:添加膨胀珍珠岩比例较低,砂粒内部没有形成有效阻热层,同时钢水传搁时间超长(6-8h),导致热量向水口内引流砂传递过多,砂子过度烧结,从而导致自开率降低。对比例7:未添加膨胀珍珠岩,砂粒内部无法形成阻热层;同时钢包容积小,盛钢量少,钢液对烧结层静压力不足;传搁时间延长导致引流砂过度烧结,加剧了烧氧现象的发生,使得自开率较低。对比例8:膨胀珍珠岩体积密度与铬矿砂、石英砂、电熔镁砂体积密度相比,差别过大,在本发明限定的配比下,当膨胀珍珠岩超出30重量份时,产品原材料均匀性得不到有效控制,无法制备出可以进行实际应用的引流剂。本发明引流剂在骨架原料中配入合适比例的膨胀珍珠岩,使膨胀珍珠岩在引流剂内部形成阻热层,克服了钢水处理过程温度高、传搁时间长等不利因素,同时有效减少热传递量,引流砂烧结情况缓解,保证了钢包自开率,使得钢包在传搁时间延长至8h时,自开率依然可以达到93%以上,较现有技术进步显著。

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1