一种基于3D打印技术制备整体式分子筛块体的方法与流程

文档序号:16542821发布日期:2019-01-08 20:35阅读:347来源:国知局
一种基于3D打印技术制备整体式分子筛块体的方法与流程

本发明属于分子筛类吸附剂或催化剂制备技术领域,具体涉及一种基于3d打印技术智能化设计制备具有高机械强度和高孔隙率的整体式分子筛块体的方法。



背景技术:

分子筛是由硅氧四面体和铝氧四面体通过共享氧原子而形成的三维空旷骨架晶体材料,因其独特的孔道结构和固体酸性质,被广泛应用于气体分离与净化、催化、离子交换等领域。一般合成的分子筛晶体尺寸在0.1~10μm,作为吸附剂或催化剂在使用时需要将其加工成毫米级的颗粒型、球型、条型等,但这些吸附剂或催化剂构型普遍存在压降大、传质或传热效率低、使用时易磨损、物料利用率低等缺点。因此,将分子筛加工成具有整体式的块体结构将大大降低其压力降,提高其传质或传热效率,增加其抗磨损性能。

3d打印,又称增材制造,是一种通过计算机辅助程序设计来创造结构的方法,近年来受到全世界的广泛关注。与传统的制造方法不同,3d打印过程是一种自下而上的制造方法,通过逐层增加材料层而实现,从而可以更加高效的制作复杂的3d结构。3d打印技术目前已广泛应用于机械加工、建筑、生物医疗、日用品加工、航空航天等领域。随着技术的发展和运营成本的降低,以及打印材料性能的控制和精度的提高,3d打印的应用也大大扩展,而分子筛类吸附剂或催化剂的制造是3d打印最有应用前景的领域之一,3d打印制造技术将以更经济和节能的方式为新型结构分子筛吸附剂或催化剂的制备提供新的设计思路和解决方案。

然而,目前还未见到基于3d打印技术智能化加工制造整体式分子筛块体吸附剂或催化剂的方法。如何调配适用于3d打印的合适物料,进而打印出具有优异性能的分子筛块体吸附剂或催化剂已成为一项亟待解决的难题。



技术实现要素:

本发明所要解决的技术问题是提供一种基于3d打印技术智能化设计制备整体式分子筛块体的方法,克服现有颗粒型、球型、条型吸附剂或催化剂压降大、传质或传热效率低、使用时易磨损等缺点。本发明成本低廉,制备过程简单,物料利用率高,可根据实际工况条件精确设计和优化分子筛块体结构分布,直接一步打印出目的整体式分子筛块体,大大缩短了分子筛型体的制备时间。得到的整体式分子筛块体具有机械强度高、孔隙发达、压降小、传质速率快、具有均匀的微孔-介孔-大孔等级孔结构等优点,适用于各类分子筛吸附剂或催化剂的加工制造。

本发明所述的一种基于3d打印技术制备整体式分子筛块体吸附剂或催化剂的方法,其步骤如下:

(1)将分子筛粉体与无机粘结剂、无机纤维研磨后混合搅拌均匀得到混合粉体;将有机塑形剂、造孔剂加入水中,混合至均匀胶状物,然后加入到上述混合粉体中,再次混合搅拌得到均匀的糊状混合物;得到的糊状混合物中干基质量组成为分子筛40~90wt%,无机粘结剂5~50wt%,无机纤维1~5wt%,造孔剂1~5wt%,有机塑形剂1~5wt%。

(2)将得到的糊状混合物进行超声波处理,以消除糊状物中包裹的气泡,得到均匀糊状混合物;

(3)根据需要得到的整体式分子筛块体的形状,利用autocad软件设计打印程序;

(4)将步骤(2)得到的均匀糊状混合物置于3d打印设备中,进行3d打印成型;

(5)将步骤(4)产物经过低温老化塑形和高温焙烧后即得到3d打印整体式分子筛块体。

更具体的,所述的分子筛粉体类型为具有lta、fau、mfi、bea、cha、mor等拓扑结构分子筛中的一种或二种以上任意比例的混合物;

所述的无机粘结剂为高岭土、凹凸棒土、海泡石、埃洛石、硅藻土、硅溶胶、硅酸钠、拟薄水铝石、氧化铝等的一种或二种以上任意比例的混合物;

所述的无机纤维为玻璃纤维、石英纤维、陶瓷纤维中的一种或二种以上任意比例的混合物;

所述的有机塑形剂为羧甲基纤维素、羧甲基壳聚糖、羧甲基淀粉、聚丙烯酰胺、聚乙烯醇等有机高分子中的一种或二种以上任意比例的混合物;

所述的造孔剂为面粉、各类淀粉、田菁粉中的一种或任意比例的混合物。

更具体的,步骤(1)中所述的混合搅拌方式可以为手工搅拌、机械搅拌、磁力搅拌、震荡等,混合搅拌时间为0.5h~5h,搅拌速度为200~1000转/分钟;步骤(2)中进行超声波处理的处理时间为1~30分钟,超声波功率为10~50千赫兹。

更具体的,整体式分子筛块体是由3d打印的连续分子筛棒体形成的网络状结构层层堆叠而成,为方形体或圆柱形体;其中打印速度为0.1~10mm/s,打印精度为±0.01mm,打印的棒体直径为0.1~2mm,棒体间距为0.1~2mm,层间距为0.1~1mm。

更具体的,步骤(5)中所述的低温老化塑形是指将步骤(4)产物置于冷冻干燥机、室外环境或烘箱中放置2~72h,温度是-10~50℃。

更具体的,步骤(5)中所述的高温焙烧是指将经过低温老化塑形的产物置于马弗炉中进行程序升温焙烧,升温程序为1~20℃/min,焙烧温度为400~800℃,焙烧时间为1~5小时,焙烧气氛可以为空气、真空、惰性气体(氮气或氩气)。

更具体的,步骤(5)得到的整体式分子筛块体为具有任意尺寸的方形体或圆柱形体结构(详见附图1);得到的方形体或圆柱形体具有层层堆叠结构(详见附图2);得到的分子筛块体的抗压强度为1~10mpa;孔隙率为50~80%。

通过采用上述技术方案,本发明具有以下的有益效果:

(1)本发明首次将智能化3d打印技术引入传统分子筛的加工成型过程,可根据实际工况条件,利用计算机辅助编程实现对分子筛块体结构分布的精确设计和优化。得到的整体式分子筛块体具有高机械强度、高孔隙率、具有均匀的微孔-介孔-大孔等级孔结构、适用于各类分子筛吸附剂或催化剂的加工制造。

(2)与传统构型分子筛吸附剂或催化剂相比,本发明的得到的整体式分子筛块体具有压降低、传质和传热效率高、避免了颗粒型、球型或条型分子筛之间的相对运动,增加了其耐磨性能。

(3)本发明使用廉价的、具有高黏性的天然矿物或其他廉价的无机物作为成型粘结剂,可提高最终分子筛块体的机械强度;使用纤维状无机物作为添加剂,有利于形成相互连接的整体三维网状结构,进一步提高了最终分子筛块体的机械强度和抗耐磨性能,有效避免了裂纹的产生;使用羧甲基纤维素、羧甲基壳聚糖、羧甲基淀粉、聚丙烯酰胺、聚乙烯醇等有机高分子作为塑形剂可大大提高3d打印过程中的流畅性,最终型体表面的光滑程度,焙烧后还可以增加孔隙率,提高传质速率;使用天然淀粉类作为造孔剂,可进一步提高最终分子筛块体的孔隙率,增加其介孔-大孔占比,提高传质速率。

(4)本发明将混合搅拌均匀后得到的糊状物用超声波进行处理,消除了糊状物中包裹的气泡对最终块体分子筛的影响,避免了内部缺陷的产生。

(5)本发明的低温老化塑形和程序升温焙烧步骤有效避免了最终块体分子筛裂纹的出现。

(6)本发明操作简单、原料廉价易得、原料利用率高,利于工业化批量生产。适用于各类分子筛吸附剂和催化剂块体的加工制造,具有很高的研究和商业应用价值。

附图说明

图1为本发明实施例1~4得到的具有不同结构的3d打印整体式分子筛块体数码照片;

图2为本发明实施例1得到的3d打印整体式分子筛块体的低倍扫描电子显微镜照片(a:上部;b:侧面;c:横截面);

图3为本发明实施例1得到的3d打印整体式分子筛块体的不同倍数的高倍扫描电子显微镜照片(a:×1000倍;b:×5000倍;c:×15000倍)。

具体实施方式

下面结合具体实施例对本发明内容进行详细说明,以下实施例将有助于本领域研究人员进一步理解本发明,但本发明的实施方式不仅限于此,不能理解为对本发明保护范围的限制。应当指出的是,对本领域的普通研究人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。

实施例1:

(1)将商业化的4a分子筛粉体(属于lta拓扑结构)与高岭土以及陶瓷纤维混合后用玛瑙研磨手动研磨半小时,再机械搅拌1小时,得到混合粉体;将有机塑形剂羧甲基纤维素和造孔剂面粉加入到相当于4a分子筛粉体质量45%的水中,混合至均匀胶状物,然后加入上述混合粉体中,再次利用机械搅拌混合得到均匀的糊状混合物;糊状混合物中,4a分子筛粉体的质量分数为80%,高岭土的质量分数为10%,陶瓷纤维的质量分数为3%,有机塑形剂的质量分数为4%,造孔剂的质量分数为3%;

(2)将得到的糊状混合物进行超声波处理,超声功率为40千赫兹,超声时间为10分钟,以消除糊状物中包裹的气泡;

(3)利用autocad软件来构造产品模型,设计打印块体尺寸、棒体直径、棒体间距、层间距等参数(长方体,长宽均为2cm,高度为1cm,打印棒体直径为0.8mm,打印棒间距为0.8mm,层间距为0.7mm);将步骤(2)得到的均匀糊状混合物置于3d打印设备中,固定打印速度为1mm/s,进行3d打印成型;

(4)将步骤(3)中3d打印得到的4a分子筛块体置于冷冻干燥机中,温度为-5℃,放置24h,然后置于马弗炉中,在氮气保护气氛下,按10℃/min的速度升至650℃,然后保持2h即得到最终3d打印整体式4a分子筛块体(见附图1a),其长宽均为2cm,高度为1cm,打印棒体直径为0.9mm,打印棒间距为0.9mm,层间距为0.7mm,其抗压强度为4.5mpa(使用utm6104型抗压强度仪检测),孔隙率为65%(使用micromeriticsautoporeiii9410型压汞仪检测)。图2为本发明实施例1得到的3d打印整体式分子筛块体的低倍扫描电子显微镜照片(a:上部;b:侧面;c:横截面),从图2可以看出得到的分子筛块体具有完整的层层堆叠结构,所有棒体表面光滑,无裂纹、无气泡。图3为本发明实施例1得到的3d打印整体式分子筛块体的不同倍数的高倍扫描电子显微镜照片(a:×1000倍;b:×5000倍;c:×15000倍),从图3可以看出得到的分子筛块体内部微观结构呈三维网络状,具有明显的大孔-介孔-微孔等级孔结构,有利于吸附质分子或反应物分子在块体内部的扩散。得到的整体式4a分子筛块体可用于各类工业气体及天然气的深度脱水。

实施例2:

(1)将商业化nax分子筛粉体(属于fau拓扑结构)与凹凸棒土以及玻璃纤维用玛瑙研磨手动研磨1小时,再机械搅拌1小时,得到混合粉体;与此同时将有机塑形剂聚乙烯醇和造孔剂玉米淀粉加入nax分子筛粉体质量50%的水中,混合至均匀胶状物,然后加入上述混合粉体中,再次利用机械搅拌混合得到均匀的糊状混合物;糊状混合物中,nax分子筛粉体的质量分数为75%,凹凸棒土的质量分数为13%,玻璃纤维的质量分数为2%,聚乙烯醇的质量分数为5%,玉米淀粉的质量分数为5%;

(2)将得到的糊状混合物进行超声波处理,功率为30千赫兹,时间为20分钟,以消除糊状物中包裹的气泡;

(3)利用autocad软件来构造产品模型,设计打印块体尺寸(圆柱型,直径为2cm,高度为0.5cm、棒体直径为0.5mm、棒体间距为0.6、层间距为0.5mm;

(4)将得到的均匀糊状混合物置于3d打印设备,进行3d打印成型,固定打印速度为3mm/s;

(5)将3d打印得到的分子筛块体置于室温环境中(26℃),放置48h,然后置于马弗炉中,在空气气氛下,按5℃/min的速度升至600℃,然后保持3h即得到最终3d打印整体式nax分子筛块体,得到的nax分子筛块体为圆柱型,直径为2cm,高度为0.5cm,棒体直径为0.5mm、棒体间距为0.6、层间距为0.5mm(见附图1b);抗压强度为6.9mpa(使用utm6104型抗压强度仪检测);孔隙率为79%(使用micromeriticsautoporeiii9410型压汞仪检测)。得到的整体式nax分子筛块体可用于烟道气co2捕获、天然气脱co2、沼气中co2脱除、空气中co2脱除等。

实施例3:

(1)将商业化zsm-5型分子筛粉体(属于mfi拓扑结构)与海泡石以及石英纤维用玛瑙研钵手动研磨20分钟,再机械搅拌2小时,得到混合粉体;与此同时将有机塑形剂聚丙烯酰胺和造孔剂田菁粉加入mfi分子筛粉体质量30%的水中,混合至均匀胶状物,然后加入上述混合粉体中,再次利用机械搅拌混合得到均匀的糊状混合物;;糊状混合物中,zsm-5分子筛粉体的质量分数为70%,海泡石的质量分数为18%,石英纤维的质量分数为4%,聚丙烯酰胺的质量分数为4%,田菁粉的质量分数为4%;

(2)将得到的糊状混合物进行超声波处理,功率为20千赫兹,时间为30分钟,以消除糊状物中包裹的气泡;

(3)利用autocad软件来构造产品模型,设计打印块体尺寸(圆柱型,直径为2cm,高度为2cm)、棒体直径为0.8mm、棒体间距为1.0mm、层间距为0.5mm;

(4)将得到的均匀糊状混合物置于3d打印设备,进行3d打印成型,固定打印速度为3mm/s;

(5)将3d打印得到的分子筛块体置于50℃烘箱中,放置24h,然后置于马弗炉中,在真空状态下,按15℃/min的速度升至700℃,然后保持2h即得到最终3d打印整体式zsm-5分子筛块体,得到的zsm-5分子筛块体为圆柱型,直径为5cm,高度为8cm,棒体直径为0.8mm、棒体间距为0.4mm、层间距为0.3mm(见附图1c);抗压强度为9.2mpa(使用utm6104型抗压强度仪检测);孔隙率为72%(使用micromeriticsautoporeiii9410型压汞仪检测)。得到的整体式zsm-5分子筛块体可用于吸附挥发性有机污染物,还可以用于甲醇制丙烯等催化反应。

实施例4:

按照实施例2的方法,所有添加物比例、实验参数保持不变;改变打印参数,将分子筛粉体类型变为cu-ssz-13型分子筛(属于cha拓扑结构),得到整体式cu-ssz-13分子筛块体,得到的cu-ssz-13分子筛块体为方型体,直径为2cm,高度为1cm,棒体直径为0.4mm、棒体间距为0.5mm、层间距为0.4mm(见附图1d)抗压强度为7.8mpa(使用utm6104型抗压强度仪检测);孔隙率为62%(使用micromeriticsautoporeiii9410型压汞仪检测)。得到的整体式cu-ssz-13分子筛块体可用于汽车尾气氮氧化物选择性催化还原脱除。

实施例5:

按照实施例3的方法,所有添加物比例、实验参数、打印参数均保持不变,仅将分子筛粉体类型变为sapo-34,得到整体式sapo-34分子筛块体(属于cha拓扑结构),抗压强度为5.8mpa(使用utm6104型抗压强度仪检测);孔隙率为59%(使用micromeriticsautoporeiii9410型压汞仪检测)。得到的整体式sapo-34分子筛块体可用于甲醇制烯烃催化反应。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1