轻质隔热砖的制作方法

文档序号:17446700发布日期:2019-04-17 05:45阅读:491来源:国知局

本发明涉及材料领域,具体而言,涉及一种轻质隔热砖。



背景技术:

在传统能源日益枯竭而新能源发展缓慢的今天,工业窑炉的节能问题是全球冶金、建材、石化等能耗大户的一个重要课题。据有关资料介绍,中国的能耗水平是世界平均水平的3.13倍,是印度的1.12倍,美国的3.15倍,德国的5.16倍,日本的7.12倍。因此,节能降耗是我国当前很紧迫的一个现实需要。传统的隔热材料已不能满足需要,高强、高效、高热震稳定性的隔热保温炉衬材料的研发和应用就显得极为重要。

目前,我国在使用温度为1500℃~1600℃的高温窑炉里,通常使用体密为1.5g/cm3左右的氧化铝空心球砖作为炉衬。体密为1.5g/cm3左右的氧化铝空心球砖在1000℃时的导热系数为0.8w/(m.k),研制一种体密小、在1000℃时的导热系数小的轻质隔热砖,就可以使得窑炉的能耗大大降低,达到节能降耗的目的。

有鉴于此,特提出本发明。



技术实现要素:

本发明的目的在于提供一种轻质隔热砖,所述轻质隔热砖抗热震稳定性好、导热系数小、节能环保。

为了实现本发明的上述目的,特采用以下技术方案:

一种轻质隔热砖,其原料以重量份数计,包括:刚玉10-35份、莫来石20-55份、聚苯乙烯球0.5-1份、有机烧失物0.4-0.8份、氧化硅1-3份、二氧化钛1-3份、氧化钙3-5份、氧化钇3-5份、氧化镁1-3份。

刚玉和莫来石作为砖体的主体和主晶相,可以提供良好的隔热基础和较高的强度;聚苯乙烯球和有机烧失物,可以使得砖体内部获得优异的、有利于降低导热系数的气孔结构分布和气体氛围;氧化硅、二氧化钛、氧化钙、氧化钇、氧化镁除了保障隔热砖在制备过程中的可塑性和物理稳定性外,还会改变隔热砖的固相导热性能,从固相角度入手,还可以进一步降低导热系数。

优选地,所述聚苯乙烯球的粒径为0.5-1.5mm。

聚苯乙烯球的粒径决定了其在砖体内部所能形成的空穴的尺寸,同时,优选地粒径也可以改善其与其他组分混合之后的分布,进而优化气相空穴在固相中的分布,形成有益于隔热的固相-气相传热通道。粒径过小,不利于形成合适的气相通道,粒径过大则容易造成显微裂纹,经过高温受热之后容易发生断裂。

优选地,所述的轻质隔热砖,以重量份数计,还包括聚氯乙烯颗粒3-5份。

进一步优选地,所述聚氯乙烯颗粒的粒径为0.5-1.5mm。

聚氯乙烯颗粒的添加是为了对聚苯乙烯球的作用进行加强和优化。

优选地,以重量份数计,还包括氧化锆5-10份。

添加氧化锆的目的是:高温条件下,氧化锆单斜与四方相之间的可逆转变并伴随有体积效应,这种可逆转变和体积效应是有益于形成隔热需要的气相-固相通道的。此外,适量的cao、y2o3、mgo等阳离子半径与锆离子半径相差12%以内的氧化物,经高温稳定后可以形成固溶体,形成了部分稳定的氧化锆,降低四方相到单斜相的转变温度。固溶体不分解,而且具有很好的力学性能和较低的热膨胀系数,利用应力诱导相变使四方相氧化锆转变为单斜相氧化锆,起到相变增韧的作用。从实际的增韧效果看,四方相氧化锆只有一部分可以产生相变,所以实际的增韧效果与可相变的氧化锆成正比,对氧化锆相变机制的研究表明,相变往往从晶界开始,相邻晶粒间的结构紧密程度也影响相变的完全性。因此,氧化锆的使用,与氧化钙、氧化钇、氧化镁协同,合适的使用量使得氧化锆晶相转变处于一个较佳的范畴,从而隔热砖整体获得较佳的导热系数和热震性能。

优选地,所述刚玉为颗粒状,粒径小于0.1mm的细粉料占所述刚玉总质量的5-25%,粒径大于等于0.1mm、小于1mm的中度料占所述刚玉总质量的10-35%,粒径大于等于1mm、小于等于5mm的粗料占所述刚玉总质量的40-70%。

刚玉颗粒的粒径分布,极大的影响着与莫来石的协同作用,最终影响固相导热通道的基础性能。

优选地,所述原料加水制得砖坯后、干燥前,所述砖坯的含水量为26-30wt%。

更加优选地,所述干燥的最高温度为60℃,升温时间为60-72小时。

进一步优选地,所述干燥结束时所述砖坯的含水量为0.5-2wt%。

砖坯含水量的控制和干燥温度、升温时间的设置,是为了保障在制坯、干燥、烧制过程中,砖坯本身不发生垮塌、开裂和较大气泡等质量问题。需要说明的是,升温时间是指从常温升至最高温度的时间。

可选地,所述有机烧失物选自木屑、稻谷壳、草木灰和焦炭粉中的一种或多种。

有机烧失物的选择,是形成合适的气相导热通道的影响因素之一。除了气相通道的位置分布、数量分布之外,通道内的气体类型也是尤为重要的。上述有机烧失物在高温条件下可以在砖体密闭的气孔内生成导热系数小于空气的气体,因此,气相通道的导热系数进一步下降。

与现有技术相比,本发明的有益效果为:

(1)热震稳定性好;

(2)密度小、导热系数低;

(3)隔热性能优异,有利于降低能耗,节能环保。

具体实施方式

下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

实施例1

将各原料按照需求进行备料,其中,刚玉为颗粒状,粒径小于0.1mm的细粉料占所述刚玉总质量的5%,粒径大于等于0.1mm、小于1mm的中度料占所述刚玉总质量的35%,粒径大于等于1mm、小于等于5mm的粗料占所述刚玉总质量的60%;聚苯乙烯球的粒径为0.5mm。完成原料检测后,取刚玉10份、莫来石55份、聚苯乙烯球0.5份、木屑0.8份、氧化硅1份、二氧化钛3份、氧化钙3份、氧化钇5份、氧化镁1份和适量水加入搅拌机搅拌。

将搅拌好的泥料堆积在一起,陈腐24小时后加入到练泥机内挤压成型符合要求的砖坯,此时砖坯的含水量为26wt%;将成型后的砖坯放进干燥房干燥,最高温度为60℃,升温时间为60小时,干燥结束时砖坯的含水量为2wt%。

将干燥后的砖坯码在窑炉中进行烧制,控制烧成温度1600℃,然后切磨、检验、包装得到成品轻质隔热砖。

实施例2

将各原料按照需求进行备料,其中,刚玉为颗粒状,粒径小于0.1mm的细粉料占所述刚玉总质量的25%,粒径大于等于0.1mm、小于1mm的中度料占所述刚玉总质量的10%,粒径大于等于1mm、小于等于5mm的粗料占所述刚玉总质量的65%;聚苯乙烯球的粒径为1.5mm,聚氯乙烯颗粒的粒径为0.5mm。完成原料检测后,取刚玉35份、莫来石20份、聚苯乙烯球1份、稻谷壳0.4份、氧化硅3份、二氧化钛1份、氧化钙5份、氧化钇3份、氧化镁3份、聚氯乙烯颗粒3份和适量水加入搅拌机搅拌。

将搅拌好的泥料堆积在一起,陈腐48小时后加入到练泥机内挤压成型符合要求的砖坯,此时砖坯的含水量为30wt%;将成型后的砖坯放进干燥房干燥,最高温度为60℃,升温时间为72小时,干燥结束时砖坯的含水量为0.5wt%。

将干燥后的砖坯码在窑炉中进行烧制,控制烧成温度1620℃,然后切磨、检验、包装得到成品轻质隔热砖。

实施例3

将各原料按照需求进行备料,其中,刚玉为颗粒状,粒径小于0.1mm的细粉料占所述刚玉总质量的25%,粒径大于等于0.1mm、小于1mm的中度料占所述刚玉总质量的35%,粒径大于等于1mm、小于等于5mm的粗料占所述刚玉总质量的40%;聚苯乙烯球的粒径为1mm,聚氯乙烯颗粒的粒径为1.5mm。完成原料检测后,取刚玉25份、莫来石30份、聚苯乙烯球0.8份、草木灰0.5份、氧化硅2份、二氧化钛2份、氧化钙4份、氧化钇4份、氧化镁2份、聚氯乙烯颗粒5份、氧化锆5份和适量水加入搅拌机搅拌。

将搅拌好的泥料堆积在一起,陈腐36小时后加入到练泥机内挤压成型符合要求的砖坯,此时砖坯的含水量为28wt%;将成型后的砖坯放进干燥房干燥,最高温度为60℃,升温时间为68小时,干燥结束时砖坯的含水量为1wt%。

将干燥后的砖坯码在窑炉中进行烧制,控制烧成温度1640℃,然后切磨、检验、包装得到成品轻质隔热砖。

实施例4

将各原料按照需求进行备料,其中,刚玉为颗粒状,粒径小于0.1mm的细粉料占所述刚玉总质量的10%,粒径大于等于0.1mm、小于1mm的中度料占所述刚玉总质量的20%,粒径大于等于1mm、小于等于5mm的粗料占所述刚玉总质量的70%;聚苯乙烯球的粒径为0.8mm,聚氯乙烯颗粒的粒径为1mm。完成原料检测后,取刚玉15份、莫来石40份、聚苯乙烯球0.6份、焦炭粉0.6份、氧化硅2份、二氧化钛2份、氧化钙4份、氧化钇4份、氧化镁2份、聚氯乙烯颗粒4份、氧化锆10份和适量水加入搅拌机搅拌。

将搅拌好的泥料堆积在一起,陈腐40小时后加入到练泥机内挤压成型符合要求的砖坯,此时砖坯的含水量为27wt%;将成型后的砖坯放进干燥房干燥,最高温度为60℃,升温时间为64小时,干燥结束时砖坯的含水量为1.5wt%。

将干燥后的砖坯码在窑炉中进行烧制,控制烧成温度1580℃,然后切磨、检验、包装得到成品轻质隔热砖。

实施例5

将各原料按照需求进行备料,其中,刚玉为颗粒状,粒径小于0.1mm的细粉料占所述刚玉总质量的15%,粒径大于等于0.1mm、小于1mm的中度料占所述刚玉总质量的25%,粒径大于等于1mm、小于等于5mm的粗料占所述刚玉总质量的60%;聚苯乙烯球的粒径为1.2mm,聚氯乙烯颗粒的粒径为1.2mm。完成原料检测后,取刚玉30份、莫来石50份、聚苯乙烯球0.6份、草木灰0.7份、氧化硅1.5份、二氧化钛2.5份、氧化钙4.5份、氧化钇3.5份、氧化镁2.5份、聚氯乙烯颗粒3.5份、氧化锆8份和适量水加入搅拌机搅拌。

将搅拌好的泥料堆积在一起,陈腐36小时后加入到练泥机内挤压成型符合要求的砖坯,此时砖坯的含水量为28wt%;将成型后的砖坯放进干燥房干燥,最高温度为60℃,升温时间为68小时,干燥结束时砖坯的含水量为1wt%。

将干燥后的砖坯码在窑炉中进行烧制,控制烧成温度1640℃,然后切磨、检验、包装得到成品轻质隔热砖。

比较例1

与实施例1相比,原料中不含聚苯乙烯球。

比较例2

与实施例2相比,原料中不含有机烧失物。

比较例3

与实施例3相比,原料中不含氧化钙、氧化钇和氧化镁。

比较例4

与实施例4相比,刚玉颗粒的粒径均为0.1-1mm。

比较例5

与实施例5相比,干燥前砖坯含水量为20wt%,干燥后砖坯含水量为2.5wt%。

对实施例1-5和比较例1-5得到的产品各500组进行性能测试。具体测试结果如下表1所示:

表1测试结果

上述测试数据表明,本申请提供的轻质隔热砖,成品率高、密度小、导热系数小、热震稳定性强、耐压强度大。

为了进一步的达到节能环保、废物利用的目的,氧化锆、氧化钙、氧化钇、氧化镁等组分,可以用废旧的含锆陶瓷辊棒进行替代。

尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1