一种镁铝钛砖及其制备方法和应用与流程

文档序号:18456142发布日期:2019-08-17 01:36阅读:441来源:国知局

本发明涉及耐火材料技术领域,具体涉及一种镁铝钛砖及其制备方法和应用。



背景技术:

镁铬砖在真空循环脱气精炼炉(rh精炼炉)上已经广泛应用多年,但镁铬砖使用后其中部分铬会从cr3+转变为剧毒和致癌的cr6+,破坏环境且会影响人们的健康。因此,无铬化耐火制品的开发研制是钢铁精炼用耐火材料的发展方向。

目前国内外研究和报道的产品,主要为烧成或不烧镁尖晶石砖或刚玉尖晶石整体浇注料,但不烧镁尖晶石砖使用过程中体积膨胀较大,材料易剥落,同时结合剂酚醛树脂会碳化残留,对钢水中碳含量造成不良影响;烧成镁尖晶石砖不会像不烧镁尖晶石砖那样体积膨胀大,但其内部属单一尖晶石相结构,材质本身的耐钢渣及钢水的侵蚀冲刷能力较镁铬砖差很多;刚玉尖晶石整体浇注料高温体积不稳定,不耐侵蚀冲刷,容易出现裂缝等问题。



技术实现要素:

本发明的目的在于提供一种镁铝钛砖及其制备方法和应用,本发明提供的镁铝钛砖具有优异的耐高温钢水及熔渣的冲刷及侵蚀性能、优良的高温强度及体积稳定性,且环境友好,可替代目前常用的镁铬质耐火材料,避免cr6+污染问题。

为了实现上述发明目的,本发明提供以下技术方案:

本发明提供了一种镁铝钛砖,按质量份数计,包括以下制备原料:

电熔镁砂50~65份;

烧结镁砂13~23份;

电熔尖晶石10~25份;

第一结合剂2.0~4.0份;

预烧共磨粉5~15份;所述预烧共磨粉由包括氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂的制备原料依次经混合、压制成型、预烧和研磨而成。

优选地,所述电熔镁砂的粒度≤5mm,所述烧结镁砂的粒度≤3mm,所述电熔尖晶石的粒度≤3mm。

优选地,所述预烧共磨粉的粒度≤0.044mm。

优选地,所述预烧共磨粉中氧化铝粉、二氧化钛粉和轻烧镁粉的质量比为(1~1.2):(1.2~1.5):(0.8~1.2)。

优选地,所述预烧共磨粉中氧化铝粉的粒度为2~5μm,二氧化钛粉的粒度为30~45μm,轻烧镁粉的粒度为30~45μm。

优选地,所述预烧共磨粉的制备方法包括以下步骤:

将氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂混合后依次进行压制成型、预烧和研磨,得到预烧共磨粉。

优选地,所述压制成型的压力为500~900t;所述预烧的温度为1750~1800℃,保温时间为10~14h。

本发明提供了上述技术方案所述镁铝钛砖的制备方法,包括以下步骤:

将电熔镁砂、烧结镁砂、电熔尖晶石、预烧共磨粉和第一结合剂混合后依次进行压制成型和烧成,得到镁铝钛砖。

优选地,所述压制成型的压力为1000~2500t;所述烧成的温度为1550~1750℃,保温时间为15~25h。

本发明提供了上述技术方案所述镁铝钛砖或上述技术方案所述制备方法制备得到的镁铝钛砖在钢铁精炼炉中的应用。

本发明提供了一种镁铝钛砖,按质量份数计,包括以下制备原料:电熔镁砂50~65份;烧结镁砂13~23份;电熔尖晶石10~25份;第一结合剂2.0~4.0份;预烧共磨粉5~15份;所述预烧共磨粉由包括氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂的制备原料依次经混合、压制成型、预烧和研磨而成。在本发明中,氧化铝粉、二氧化钛粉和轻烧镁粉在预烧过程中会发生反应,形成尖晶石结构相,所得预烧共磨粉与电熔镁砂、烧结镁砂和电熔尖晶石复配,在制备镁铝钛砖的烧成过程中,预烧共磨粉中尖晶石结构相与体系中mgo和al2o3成分会进一步复合,形成多相复合的mgo-mgo·al2o3-2mgo·tio2固溶体,从而使所得镁铝钛砖具有优异的耐高温钢水及熔渣的冲刷及侵蚀性能、优良的高温强度及体积稳定性,且环境友好,可替代目前常用的镁铬质耐火材料,避免cr6+污染问题。

具体实施方式

本发明提供了一种镁铝钛砖,按质量份数计,包括以下制备原料:

电熔镁砂50~65份;

烧结镁砂13~23份;

电熔尖晶石10~25份;

第一结合剂2.0~4.0份;

预烧共磨粉5~15份;所述预烧共磨粉由包括氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂的制备原料依次经混合、压制成型、预烧和研磨而成。

在本发明中,按质量份数计,所述镁铝钛砖的制备原料包括电熔镁砂50~65份,优选为55~60份。在本发明中,以质量含量计,所述电熔镁砂中mgo优选≥97.5%,cao优选≤1.6%,其他杂质优选≤1.0%。在本发明中,所述电熔镁砂的粒度优选≤5mm;按粒度大小划分,所述电熔镁砂优选包括第一电熔镁砂、第二电熔镁砂、第三电熔镁砂和第四电熔镁砂,其中,所述第一电熔镁砂的粒度优选为3~5mm,所述第二电熔镁砂的粒度优选为1~2.999mm,所述第三电熔镁砂的粒度优选为0.063~0.999mm,所述第四电熔镁砂的粒度优选<0.063mm;所述第一电熔镁砂、第二电熔镁砂、第三电熔镁砂和第四电熔镁砂的质量比优选为(10~15):(13~20):(5~15):(15~20)。本发明优选采用上述粒度及配比的电熔镁砂作为主要原料,能够进一步保证其在烧成过程中与其它制备原料充分反应,提高镁铝钛砖的高温强度及体积稳定性;且高纯的电熔镁砂有利于保证镁铝钛砖具有较好的耐侵蚀性。

在本发明中,以所述电熔镁砂的质量份数为基准,所述镁铝钛砖的制备原料包括烧结镁砂13~23份,优选为15~20份。在本发明中,以质量含量计,所述烧结镁砂中mgo优选≥98.0%,cao优选≤1.5%,其他杂质优选≤0.8%。在本发明中,所述烧结镁砂的粒度优选≤3mm;按粒度大小划分,所述烧结镁砂优选包括第一烧结镁砂和第二烧结镁砂,其中,所述第一烧结镁砂的粒度优选为1~3mm,所述第二烧结镁砂的粒度优选为0.063~0.999mm;所述第一烧结镁砂和第二烧结镁砂的质量比优选为(10~15):(4~8)。本发明优选采用上述粒度及配比的烧结镁砂作为基体原料,有利于进一步促进烧成过程中方镁石晶体结构的转化并保证较高的烧结反应活性,有利于保证镁铝钛砖具有较好的体积稳定性。

在本发明中,以所述电熔镁砂的质量份数为基准,所述镁铝钛砖的制备原料包括电熔尖晶石10~25份,优选为15~20份。在本发明中,以质量含量计,所述电熔尖晶石中al2o3优选≥70%,al2o3+mgo优选≥98.0%,其他杂质优选≤2.0%。在本发明中,所述电熔尖晶石的粒度优选≤3mm;按粒度大小划分,所述电熔尖晶石优选包括第一电熔尖晶石、第二电熔尖晶石和第三电熔尖晶石,其中,所述第一电熔尖晶石的粒度优选为1~3mm,所述第二电熔尖晶石的粒度优选为0.063~0.999mm,所述第三电熔尖晶石的粒度优选<0.063mm;所述第一电熔尖晶石、第二电熔尖晶石和第三电熔尖晶石的质量比优选为(3~5):(5~10):(3~8)。本发明优选采用上述粒度及配比的电熔尖晶石作为基体原料,有利于进一步促进烧成过程中多相复合的mgo-mgo·al2o3-2mgo·tio2固溶体的形成,且可以缓冲和吸收热应力,保证镁铝钛砖具有较好的韧性和热震稳定性。

在本发明中,以所述电熔镁砂的质量份数为基准,所述镁铝钛砖的制备原料包括第一结合剂2.0~4.0份,优选为2.5~3.5份。在本发明中,所述第一结合剂优选由糊精、纸浆废液、木质素磺酸钙、甲基纤维素和聚磷酸盐中的至少一种与水混合配制而成;当所述第一结合剂中包括糊精、纸浆废液、木质素磺酸钙、甲基纤维素和聚磷酸盐中的两种以上时,本发明对各组分的配比没有特殊的限定,采用任意配比均可。在本发明中,所述第一结合剂的比重优选为1.0~1.6g/cm3,更优选为1.2~1.4g/cm3。本发明通过第一结合剂能显著改善操作性能,有利于增加压制成型后所得坯体的早期强度,并有防止龟裂的效果,可提高产品合格率。

在本发明中,以所述电熔镁砂的质量份数为基准,所述镁铝钛砖的制备原料包括预烧共磨粉5~15份,优选为6~12份;所述预烧共磨粉的粒度优选≤0.044mm。在本发明中,所述预烧共磨粉由包括氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂的制备原料依次经混合、压制成型、预烧和研磨而成;所述第二结合剂的可选范围优选与所述第一结合剂的可选范围一致,可以与第一结合剂的种类一致,也可以不一致;所述第二结合剂的用量优选为氧化铝粉、二氧化钛粉和轻烧镁粉总质量的3.0~5.0%。

在本发明中,所述氧化铝粉、二氧化钛粉和轻烧镁粉的质量比优选为(1~1.2):(1.2~1.5):(0.8~1.2)。本发明以上述配比的氧化铝粉、二氧化钛粉和轻烧镁粉为基体原料,在预烧过程中形成的矿物相为方镁石和镁-铝-钛复合尖晶石,但由于al2o3在mgo中固溶度较低(1700℃时为3%),含tio2的方镁石和镁-铝-钛复合尖晶石材料中形成的是mgo·al2o3-2mgo·tio2固溶体,为方镁石晶间相,此时体系中mgo、al2o3和tio2的含量较均衡,即处在三元相图中间位置,所得预烧共磨粉具有最佳的抗渗透性,而且受熔渣碱度(cao/sio2)影响不明显,有利于提高所述预烧共磨粉的烧结活性,进而保证与电熔镁砂、烧结镁砂和电熔尖晶石复配制备具有优异高温性能的镁铝钛砖。

在本发明中,以质量含量计,所述氧化铝粉中al2o3优选≥99.0%,粒度优选为2~5μm;所述二氧化钛粉优选为锐钛矿型,二氧化钛粉中tio2优选≥99.0%,粒度优选为30~45μm;所述轻烧镁粉优选是由天然菱镁矿制备得到,轻烧镁粉中mgo优选≥90.0%,粒度优选为30~45μm。本发明优选控制氧化铝粉、二氧化钛粉和轻烧镁粉的粒度在微米级别,且所用原料的纯度较高,有利于进一步提高各制备原料的反应活性,进而保证所得预烧共磨粉与电熔镁砂、烧结镁砂和电熔尖晶石复配制备具有优异性能的镁铝钛砖。

在本发明中,所述预烧共磨粉的制备方法优选包括以下步骤:

将氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂混合后依次进行压制成型、预烧和研磨,得到预烧共磨粉。

本发明对于氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂的混合方式没有特殊的限定,采用本领域技术人员熟知的物料混合方式将各组分混合均匀即可;本发明优选将氧化铝粉、二氧化钛粉和轻烧镁粉加入混炼机中干混3~5min,然后加入第二结合剂湿混10~15min,以保证各组分混合均匀且无结球现象。本发明对于所述干混和湿混过程中温度没有特殊的限定,在室温条件下进行即可,即不需要额外的加热或降温。

将氧化铝粉、二氧化钛粉、轻烧镁粉和第二结合剂混合后,本发明优选将所得混合料进行压制成型。在本发明中,所述压制成型的压力优选为500~900t,更优选为600~800t。本发明将混合料轻压成型,防止所得坯体出现明显裂纹,保证坯体的完整性,有利于预烧顺利进行。

完成所述压制成型后,本发明优选将所得成型料干燥后进行预烧。在本发明中,所述干燥的温度优选为80~120℃,更优选为100~120℃;时间优选为12~24h,更优选为15~20h。在本发明中,所述预烧的温度优选为1750~1800℃;保温时间优选为10~14h。本发明通过预烧使所得预烧共磨粉中形成尖晶石结构相,与电熔镁砂、烧结镁砂和电熔尖晶石复配制备镁铝钛砖的烧成过程中,预烧共磨粉中尖晶石结构相与体系中mgo和al2o3成分会进一步复合,形成多相复合的mgo-mgo·al2o3-2mgo·tio2固溶体,从而使所得镁铝钛砖具有优异的性能。

完成所述预烧后,本发明优选将所得坯体进行研磨,得到预烧共磨粉。本发明对于所述研磨没有特殊的限定,能够得到粒度符合要求的预烧共磨粉即可。在本发明中,当所述坯体的尺寸较大时,优选将所述坯体进行破碎后再研磨;本发明对于所述破碎的具体操作方式没有特殊的限定,能够保证后续研磨顺利进行,得到粒度符合要求的预烧共磨粉即可。

本发明提供了上述技术方案所述镁铝钛砖的制备方法,包括以下步骤:

将电熔镁砂、烧结镁砂、电熔尖晶石、预烧共磨粉和第一结合剂混合后依次进行压制成型和烧成,得到镁铝钛砖。

本发明对于电熔镁砂、烧结镁砂、电熔尖晶石、预烧共磨粉和第一结合剂的混合方式没有特殊的限定,采用本领域技术人员熟知的物料混合方式将各组分混合均匀即可;当电熔镁砂、烧结镁砂和电熔尖晶石采用上述技术方案所述粒度及配比时,本发明优选采用如下方案进行混合:先将电熔镁砂颗粒(所述电熔镁砂颗粒指第一电熔镁砂、第二电熔镁砂和第三电熔镁砂)、烧结镁砂、电熔尖晶石颗粒(所述电熔尖晶石颗粒指第一电熔尖晶石和第二电熔尖晶石)加入混炼机中干混3~5min,然后加入第一结合剂湿混5~8min,之后加入电熔镁砂细粉(所述电熔镁砂细粉指第四电熔镁砂)、电熔尖晶石细粉(所述电熔尖晶石细粉指第三电熔尖晶石)和预烧共磨粉继续混合10~15min,以保证各组分混合均匀且无结球现象。本发明对于所述干混、湿混和继续混合过程中温度没有特殊的限定,在室温条件下进行即可,即不需要额外的加热或降温。

将电熔镁砂、烧结镁砂、电熔尖晶石、预烧共磨粉和第一结合剂混合后,本发明将所得混合料进行压制成型。在本发明中,所述压制成型的压力优选为1000~2500t,更优选为1000~1500t。本发明通过压制成型排出混合料内气体,避免后续烧成过程中气体排出破坏砖体,保证砖体的气孔率低、结构密实,利于砖体烧成并能保证合格率,提高砖体使用过程中耐冲刷性和抗渗透性。

完成所述压制成型后,本发明优选将所得成型料干燥后进行烧成,冷却后得到镁铝钛砖。在本发明中,所述干燥的温度优选为120~160℃,更优选为130~150℃;时间优选为48~72h,更优选为55~65h。在本发明中,所述烧成的温度优选为1550~1750℃,保温时间优选为15~25h;本发明通过控制烧成的温度和保温时间,能够保证各组分充分反应,有效生成稳固复合相,有利于提高镁铝钛砖的高温性能。

本发明提供了上述技术方案所述镁铝钛砖或上述技术方案所述制备方法制备得到的镁铝钛砖在钢铁精炼炉中的应用。在本发明中,所述镁铝钛砖具有优异的耐高温钢水及熔渣的冲刷及侵蚀性能、优良的高温强度及体积稳定性,且环境友好,适用于作为钢铁精炼炉内衬,尤其是作为rh精炼炉内衬,可替代目前常用的镁铬质耐火材料,避免cr6+污染问题。

下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

制备预烧共磨粉,包括以下步骤:

将氧化铝粉、二氧化钛粉和轻烧镁粉加入混炼机中干混5min,然后加入第二结合剂湿混10min,将所得混合料依次进行压制成型、干燥和预烧,得到坯体;将所述坯体进行破碎和研磨,得到粒度≤0.044mm的预烧共磨粉。

制备镁铝钛砖,包括以下步骤:

先将电熔镁砂颗粒(指第一电熔镁砂、第二电熔镁砂和第三电熔镁砂)、烧结镁砂、电熔尖晶石颗粒(指第一电熔尖晶石和第二电熔尖晶石)加入混炼机中干混5min,然后加入第一结合剂湿混8min,之后加入电熔镁砂细粉(指第四电熔镁砂)、电熔尖晶石细粉(指第三电熔尖晶石)和预烧共磨粉继续混合10min;将所得混合料依次进行压制成型、干燥和烧成,得到镁铝钛砖。

本实施例中,制备预烧共磨粉所用原料及添加量如表1和表2所示,制备预烧共磨粉过程中工艺参数如表3所示;制备镁铝钛砖所用原料及及添加量如表4和表5所示,制备镁铝钛砖过程中工艺参数如表6所示。

实施例2~5

按照实施例1的步骤制备镁铝钛砖,其中,所需原料以及工艺参数如表1~6所示。

表1实施例1~5制备预烧共磨粉所用固体原料及配比

表2实施例1~5制备预烧共磨粉所用第二结合剂及添加量

表3实施例1~5制备预烧共磨粉过程中工艺参数

表4实施例1~5制备镁铝钛砖所用固体原料及配比

表5实施例1~5制备镁铝钛砖所用第一结合剂及添加量

表6实施例1~5制备镁铝钛砖过程中工艺参数

对比例1

按质量份数计,将55份电熔镁铬砂颗粒(粒度为0.088~5mm)和15份铬矿颗粒(粒度为1~3mm)干混3min,然后加入2.5份纸浆废液(比重为1.3g/cm3)湿混5min,再加入25份电熔镁铬砂细粉(粒度为<0.088mm)和5份电熔镁砂细粉(粒度为<0.088)继续混合10min,将所得混合料依次进行压制成型(压力为1000t)、干燥(温度为120℃,时间为10h)和烧成(温度为1750℃,时间为12h),得到烧成镁铬砖。

对比例2

按质量份数计,将68份电熔镁砂颗粒(粒度为0.088~5mm)与3.0份酚醛树脂湿混3min,然后加入20份电熔镁砂细粉(粒度为<0.074mm)、10份电熔尖晶石细粉(粒度为<0.074mm)和2份金属粉(粒度为<0.074mm)继续混合10min,将所得混合料依次进行压制成型(压力为800t)和热处理(温度为200℃,时间为24h),得到不烧镁尖晶石砖。

对比例3

按质量份数计,将60份电熔镁砂颗粒(粒度为0.088~5mm)、5份电熔尖晶石颗粒(粒度为0.088~3mm)和2份氧化铝颗粒(粒度为1~3mm)干混3min,加入2.5份纸浆废液(比重为1.3g/cm3)湿混4min,再加入20份电熔镁砂细粉(粒度为<0.074mm)、7份电熔尖晶石细粉(粒度为<0.074mm)和6份氧化铝微粉(粒度为<0.045mm)继续混合30min,将所得混合料依次进行压制成型(压力为1000t)、干燥(温度为120℃,时间为10h)和烧成(温度为1650℃,时间为10h),得到烧成镁尖晶石砖。

对实施例1~5和对比例1~3制备的产品进行性能测试,结果见表7,其中,各测试指标的条件以及依据的标准具体如下:

mgo、al2o3以及tio2质量分数:gb/t5069;

体积密度:gb/t2997;

显气孔率:gb/t2997;

常温耐压强度:gb/t5072;

常温抗折强度:gb/t3001;

高温抗折强度:gb/t3002;

抗钢渣侵蚀率:gb/t8931;

抗钢渣渗透深度:gb/t8931;

热震稳定性能:gb/t30873;

荷重软化开始温度:gb/t5989。

表7实施例1~5和对比例1~3制备的产品的性能测试结果

由表7可知,实施1~5制备的镁铝钛砖的钢渣侵蚀率均明显低于对比例,且钢渣渗透深度明显比对比例浅,侵蚀性能优异,且常温耐压强度、常温抗折强度、高温抗折强度及热震稳定性能也优于对比例。

此外,在同等rh精炼炉使用条件下测试实施例2和对比例1中产品的寿命,结果显示,对比例1制备的烧成镁铬砖的使用寿命仅为98炉,实施例2制备的镁铝钛砖的使用寿命可达120炉,使用寿命长,明显优于对比例。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1