一种YBCO超导薄膜及其制备方法与流程

文档序号:21843421发布日期:2020-08-14 16:46阅读:440来源:国知局
一种YBCO超导薄膜及其制备方法与流程

本发明涉及第二代高温超导带材技术领域,尤其涉及一种ybco超导薄膜及其制备方法。



背景技术:

第二代高温超导带材是指以ybco-123系超导材料为主的稀土类钡铜氧化物超导涂层导体,是由金属合金基带、种子层、阻挡层、帽子层、稀土钡铜氧超导层、保护层以及稳定层等构成,是一种多层结构。第二代高温超导带材在高磁场下有负载高电流的能力,可以在较高的温度和磁场下应用,是各国在高温超导领域竞相研究开发的焦点。ybco作为涂层导体能够在强电领域应用,主要是由于它具有能够负载电流且不损耗的特性。对同一根带材来说,增加它的临界电流密度(jc)也就提高了它的载流能力。因此提高ybco超导膜的临界电流密度是近几年来的研究热点。

目前,为了提高ybco超导膜的导电性能,常见的方法有:在ybco陶瓷靶中直接掺入氧化锆和过量的钡粉末,采用pld法(脉冲激光沉积法)制备得到了含有尺寸为10nm的bazro3(bzo)颗粒的复合薄膜,其临界电流密度在整个外加磁场都高于纯ybco薄膜的临界电流密度。采用三氟乙酸盐-金属有机沉积法(tfa-mod法)制备了含有纳米bazro3的ybco薄膜,其临界电流密度约为5~6ma/cm2,比tfa-mod法制备的纯ybco薄膜有了一定程度的提高。但是现有技术制得的ybco超导薄膜仍存在临界电流密度低的问题,尤其是在外加磁场下临界电流密度衰减的非常严重。



技术实现要素:

有鉴于此,本发明的目的在于提供一种ybco超导薄膜及其制备方法。本发明提供的制备方法利用纳米棒状钛酸钡与氢质子轰击产生的纳米点的协同作用,提高ybco超导薄膜的临界电流密度。

为了实现上述发明目的,本发明提供以下技术方案:

本发明提供了一种ybco超导薄膜的制备方法,包括以下步骤:

将乙酸钇、乙酸钡、乙酸铜和三氟乙酸水溶液混合,得到三氟乙酸盐溶液;

除去所述三氟乙酸盐溶液中的溶剂,得到粗凝胶;

将所述粗凝胶与甲醇混合后再除去溶剂,得到纯净凝胶;

将所述纯净凝胶、甲醇、松油醇和乙酰丙酮钛混合,得到前驱液;

将所述前驱液涂覆在基片表面后依次进行热分解和烧结,得到含有纳米钛酸钡的四方相ybco膜;

将所述含有纳米钛酸钡的四方相ybco膜进行退火处理,得到ybco超导薄膜前体;

将所述ybco超导薄膜前体进行氢质子轰击,得到所述ybco超导薄膜。

优选地,所述三氟乙酸盐溶液中y3+、ba2+和cu2+的摩尔比1:2.05~2.1:3。

优选地,所述前驱液中甲醇和松油醇的体积比为1:1。

优选地,所述前驱液中乙酰丙酮钛的摩尔量为金属离子总摩尔量的5%~10%,所述金属离子包括y3+、ba2+和cu2+

优选地,所述热分解的温度为300~500℃,时间为5~10h,升温至所述热分解的温度的升温速率为40~60℃/h。

优选地,所述烧结的温度为750~850℃,时间为2~4h,由室温升温至所述烧结的温度的升温速率为200~400℃/h。

优选地,所述退火处理在纯氧条件下进行,所述退火处理的温度为450~550℃,所述退火处理的时间为0.5~1.5h。

优选地,所述氢质子轰击的剂量为1016~1018/cm2,辐射角度为30°~90°。

本发明还提供了上述技术方案所述的制备方法制得的ybco超导薄膜,所述ybco超导薄膜包括纳米棒状钛酸钡和氢质子轰击产生的纳米点,所述纳米棒状钛酸钡的粒径为10~30nm,所述纳米点存于所述ybco超导薄膜的表面及内部。

优选地,所述ybco超导薄膜中纳米棒状钛酸钡的含量为5~10mol%。

本发明提供了一种ybco超导薄膜的制备方法,包括以下步骤:将y(ch3coo)3(乙酸钇)、ba(ch3coo)2(乙酸钡)、cu(ch3coo)2(乙酸铜)和三氟乙酸水溶液混合,得到三氟乙酸盐溶液;除去所述三氟乙酸盐溶液中的溶剂,得到粗凝胶;将所述粗凝胶与甲醇混合后再除去溶剂,得到纯净凝胶;将所述纯净凝胶、甲醇、松油醇和乙酰丙酮钛混合,得到前驱液;将所述前驱液涂覆在基片后依次进行热处理和烧结,得到含有纳米钛酸钡的四方相ybco膜;将所述含有纳米钛酸钡的四方相ybco膜进行退火处理,得到ybco超导薄膜前体;将所述ybco超导薄膜前体进行氢质子轰击,得到所述ybco超导薄膜。

有益效果:

本发明通过采用三氟乙酸盐-金属有机沉积(tfa-mod)法制备含有纳米钛酸钡的ybco超导薄膜,本发明在含有三氟乙酸钇、三氟乙酸钡和三氟乙酸铜的前驱液中添加松油醇和乙酰丙酮钛,松油醇是溶剂,增加粘稠度,乙酰丙酮钛是钛的有机盐,添加后可以后续热处理生成钛酸钡,经过热分解和烧结后,制备了含有纳米棒状钛酸钡的四方相ybco膜,然后经过退火处理,再采用氢质子轰击,在ybco超导薄膜前体内部产生非常均匀的纳米点,利用纳米棒状的钛酸钡与氢质子轰击产生的纳米点两种不同结构的纳米相的协同作用,这些具有纳米尺寸的钛酸钡和氢质子轰击得到的点缺陷很好地起到了磁通钉扎的作用,并且与单一纳米颗粒相比,两种不同结构的纳米物质能够协同提高ybco膜的临界电流密度。实施例的数据表明,采用本发明的方法制备的ybco超导薄膜的临界电流密度无论是在零场还是在高场都有提高,在零场下临界电流密度超过10ma/cm2(77k,0t),大大提高了ybco超导薄膜的载流能力,降低了涂层导体的生产成本,拓宽了ybco涂层导体的应用范围。

附图说明

图1为实施例1制得的ybco超导薄膜的临界电流密度曲线;

图2为实施例1中未经过氢质子轰击的薄膜的临界电流密度曲线;

图3为实施例2制得的ybco超导薄膜的临界转变温度曲线;

图4为实施例2制得的ybco超导薄膜的临界电流密度曲线;

图5为实施例3制得的ybco超导薄膜的临界电流密度曲线;

图6为实施例4制得的ybco超导薄膜的临界转变温度曲线;

图7为实施例4制得的ybco超导薄膜的临界电流密度曲线。

具体实施方式

本发明提供了一种ybco超导薄膜的制备方法,包括以下步骤:

将乙酸钇、乙酸钡、乙酸铜和三氟乙酸水溶液混合,得到三氟乙酸盐溶液;

除去所述三氟乙酸盐溶液中的溶剂,得到粗凝胶;

将所述粗凝胶与甲醇混合后再除去溶剂,得到纯净凝胶;

将所述纯净凝胶、甲醇、松油醇和乙酰丙酮钛混合,得到前驱液;

将所述前驱液涂覆在基片表面后依次进行热分解和烧结,得到含有纳米钛酸钡的四方相ybco膜;

将所述含有纳米钛酸钡的四方相ybco膜进行退火处理,得到ybco超导薄膜前体;

将所述ybco超导薄膜前体进行氢质子轰击,得到所述ybco超导薄膜。

本发明将y(ch3coo)3、ba(ch3coo)2、cu(ch3coo)2和三氟乙酸水溶液混合,得到三氟乙酸盐溶液。

在本发明中,所述三氟乙酸盐溶液中y3+、ba2+和cu2+的摩尔比优选1:2.05~2.1:3。

在本发明中,所述三氟乙酸水溶液的浓度优选为10~30mol%。

在本发明中,所述三氟乙酸盐溶液中溶质与溶剂的摩尔比优选为1:100~1:50。

在本发明的具体实施例中,所述混合优选为先将y(ch3coo)3、ba(ch3coo)2和cu(ch3coo)2混合后,再于室温下溶于三氟乙酸水溶液中。

得到三氟乙酸盐溶液后,本发明除去所述三氟乙酸盐溶液的溶剂,得到粗凝胶。在本发明的具体实施例中,优选为将所述三氟乙酸盐溶液磁力搅拌1~3h,再旋转蒸发蒸除溶剂,得到凝胶。本发明对所述磁力搅拌器搅拌和旋转蒸发仪的参数没有特殊的限定。

得到粗凝胶后,本发明将所述粗凝胶与甲醇混合后再除去溶剂,得到纯净凝胶。在本发明中,所述凝胶与甲醇的摩尔比优选为1:50~1:20。在本发明中,所述与甲醇混合后再除去溶剂的目的是进一步去除水分,得到纯净的凝胶。在本发明的具体实施例中,优选为将所述三氟乙酸盐溶液经磁力搅拌器搅拌0.5~1.5h,再采用旋转蒸发仪蒸除溶剂,得到凝胶。本发明对所述磁力搅拌器搅拌和旋转蒸发仪的参数没有特殊的限定。

得到纯净凝胶后,本发明将所述纯净凝胶、甲醇、松油醇和乙酰丙酮钛混合,得到前驱液。

在本发明中,所述前驱液中甲醇和松油醇的体积比优选为1:1。

在本发明中,所述前驱液中乙酰丙酮钛的摩尔量优选为金属离子总摩尔量的5%~10%,所述金属离子优选包括y3+、ba2+和cu2+

本发明优选将所述纯净凝胶加入到甲醇和松油醇中,制成y、ba和cu三种金属总离子浓度为1.5~3.0mol/l的溶液,更优选为2.0mol/l的溶液,再将含有y、ba和cu的溶液搅拌均匀,再加入乙酰丙酮钛。在本发明中,所述乙酰丙酮钛能够在后续生产纳米棒状钛酸钡,纳米棒状钛酸钡可以跟离子辐照的缺陷协同钉扎,协同提高ybco膜的临界电流密度。

得到前驱液后,本发明将所述前驱液涂覆在基片表面后依次进行热分解和烧结,得到含有纳米钛酸钡的四方相ybco膜。

在本发明中,所述基片优选为铝酸镧、钛酸锶或氧化镁单晶基片。

在本发明中,所述涂覆的方式优选为旋涂或提拉。在本发明的具体实施例中,所述旋涂的转速优选为1500转/分,时间优选为90s。

所述涂覆后,本发明优选将涂覆有前驱液膜的基片置于高温管式石英炉中,进行热处理分解和烧结。

在本发明中,所述热分解的温度优选为300~500℃,更优选为400℃,时间优选为5~10h,由室温升温至所述热分解的温度的升温速率优选为40~60℃/h。在本发明中,所述热分解优选在湿润的氧气条件下进行,所述热分解的目的是分解三氟乙酸盐,形成无定型的前驱膜并排出有害的残余物质。在本发明的具体实施例中,所述热分解是湿润的氧气条件下进行的,即将500sccm的氧气经过蒸馏水把水蒸气带入反应室,使反应室中水蒸气压力为100~160hpa,更优选为130hpa。

在本发明中,所述烧结的温度优选为750~850℃,更优选为800℃,时间优选为2~4h,更优选为3h,由室温升温至所述烧结的温度的升温速率优选为200~400℃/h。在本发明中,所述烧结优选在湿润的氧气和氩气混合气氛下进行,所述烧结的目的是生成含有纳米钛酸钡的四方相ybco膜。

在本发明的具体实施例中,所述烧结是在湿润的氧气和氩气混合气氛下进行的,即把500sccm含有500ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为160~240hpa,更优选为200hpa。在本发明的具体实施例中,优选是先是以400℃/h的升温速率升至750~850℃,在750~850℃保温2~4h后直接通入含有500ppm氧气的氩气混合气体。

所述烧结后,本发明降温到退火温度,对所述含有纳米钛酸钡的四方相ybco膜进行退火处理,得到ybco超导薄膜前体。在本发明中,所述降温的速率优选为100℃/h。

在本发明中,所述退火处理优选在纯氧条件下进行,所述退火处理的温度优选为450~550℃,更优选为500℃,所述退火处理的时间优选为0.5~1.5h,更优选为1.0h。在本发明中,所述退火处理的目的是使四方相的ybco吸氧转变为正交相、具有超导性能的ybco。

退火处理完成后,本发明优选将得到的退火产品在氧气氛围下随炉冷至室温。

得到ybco超导薄膜前体后,本发明将所述ybco超导薄膜前体进行氢质子轰击,得到所述ybco超导薄膜。

在本发明中,所述氢质子轰击的剂量优选为1016~1018/cm2,更优选为1017/cm2,辐射角度优选为30°~90°,更优选为60°。在本发明中,所述氢质子轰击的作用是在ybco薄膜内部产生尺度均匀的点缺陷。

本发明对所述氢质子轰击的设备没有特殊的限定,采用本领域技术人员熟知的、能够实现氢质子辐照的装置即可。

本发明还提供了上述技术方案所述的制备方法制得的ybco超导薄膜,所述ybco超导薄膜包括纳米棒状钛酸钡和氢质子轰击产生的纳米点,所述纳米棒状钛酸钡的粒径为10~30nm,所述纳米点存于所述ybco超导薄膜的表面及内部。

在本发明中,所述ybco超导薄膜中纳米棒状钛酸钡的含量优选为5~10mol%。

为了进一步说明本发明,下面结合实例对本发明提供的ybco超导薄膜及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。

实施例1

(1)称取乙酸钇、乙酸钡和乙酸铜分别为0.005mol、0.01005mol和0.015mol,将乙酸钇、乙酸钡和乙酸铜混合后溶于含10mol%的三氟乙酸的100ml去离子水中配成溶液;

(2)将步骤(1)制得的溶液经磁力搅拌器搅拌1h后,再采用旋转蒸发仪蒸除溶剂得到粗凝胶;

(3)将1.55mol的甲醇加入所述步骤(2)制得的粗凝胶中,再经磁力搅拌器搅拌0.5h后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到纯净凝胶;

(4)将步骤(3)制得的纯净凝胶加入到10ml甲醇和10ml松油醇的混合液中,制成y、ba和cu三种金属总离子浓度为1.5mol/l的溶液。将所得的含有y、ba和cu的甲醇和松油醇溶液搅拌均匀,再加入乙酰丙酮钛,所加入的乙酰丙酮钛为所述的含有y、ba和cu三种金属溶液中y、ba和cu三种金属总离子摩尔数的5%,制备成前驱液;

(5)将步骤(4)制得的前驱液以1500转/分的速度旋涂在钛酸锶单晶基片表面,旋涂时间为90s。

(6)将步骤(5)得到的涂覆好的基片放在石英舟里送入高温管式石英炉里进行热分解和烧结,最后得到含有纳米钛酸钡的四方相ybco膜。

热分解是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为100hpa,从室温平均以40℃/h的升温速率升温至300℃,然后再随炉冷却至室温,分解时间为10h。

烧结是在湿润的氧气和氩气混合气氛下进行,把500sccm含有500ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为160hpa,先以400℃/h的升温速率由室温升至最高温750℃,在750℃保温2h,然后以100℃/h降温至450℃,在450℃的纯氧气氛围(干燥)中保温0.5h使四方相的ybco吸氧转变为正交相的具有超导性能的ybco(ybco超导薄膜前体),随后样品在氧气氛围下炉冷至室温。

(7)采用将上述制备的ybco超导薄膜前体采用剂量为1016/cm2、辐射角度为30°的氢质子轰击,获得最终样品,即ybco超导薄膜。

采用综合物性测量(ppms)对样品进行了m-h测试,通过bean模型对样品的临界电流密度进行了计算,结果如图1所示。与未经氢质子轰击的样品相比(如图2所示),不论是零场下还是高场下,经过氢质子辐照过的ybco薄膜的临界电流密度都大大提高。未辐照的样品在77k零场下的临界电流密度约为5.5ma/cm2,而辐照后的样品在零场下的临界电流密度高于10ma/cm2

实施例2

(1)称取乙酸钇、乙酸钡和乙酸铜分别为0.01mol、0.02075mol和0.03mol,将乙酸钇、乙酸钡和乙酸铜混合后溶于含20mol%的三氟乙酸的200ml去离子水中配成溶液;

(2)将步骤(1)制得的溶液经磁力搅拌器搅拌2h后,再采用旋转蒸发仪蒸除溶剂得到粗凝胶;

(3)将3.175mol的甲醇加入所述步骤(2)制得的粗凝胶中,再经磁力搅拌器搅拌1h后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到纯净凝胶;

(4)将步骤(3)制得的纯净凝胶加入到15ml甲醇和15ml松油醇的混合液中,制成y、ba和cu三种金属总离子浓度为2.0mol/l的溶液。将所得的含有y、ba和cu的甲醇和松油醇溶液搅拌均匀,再加入乙酰丙酮钛,所加入的乙酰丙酮钛为所述的含有y、ba和cu三种金属溶液中y、ba和cu三种金属总离子摩尔数的7.5%,制备成前驱液;

(5)将步骤(4)制得的前驱液以1500转/分的速度旋涂在铝酸镧单晶基片上,旋涂时间为90s。

(6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行热分解和烧结,最后得到含有纳米钛酸钡的四方相ybco膜。

热分解是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为130hpa,从室温平均以40℃/h的升温速率升温至400℃,然后再炉冷却至室温。整个分解时间为10h。

烧结是在湿润的氧气和氩气混合气氛下进行,把500sccm含有500ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为200hpa,先由室温以400℃/h的升温速率升至最高温800℃,然后以100℃/h降温至500℃,在500℃的纯氧气氛围(干燥)中保温1h使四方相的ybco吸氧转变为正交相的具有超导性能的ybco(ybco超导薄膜前体),随后样品在氧气氛围下炉冷至室温。

(8)采用将上述制备的ybco超导薄膜前体采用剂量为1017/cm2、辐射角度为60°的氢质子轰击,获得最终样品,即ybco超导薄膜。

图3是ybco超导薄膜的临界转变温度曲线。从图3可以看出,ybco超导薄膜的临界转变温度为93k左右,与纯ybco相当。图4是ybco超导薄膜的临界电流密度曲线,可以看出,在77k、零场下的临界电流密度为10.2ma/cm2,远高于未辐照样品的临界电流密度。

实施例3

(1)称取乙酸钇、乙酸钡和乙酸铜分别为0.02mol、0.041mol和0.06mol,将乙酸钇、乙酸钡和乙酸铜混合后溶于含30mol%的三氟乙酸的300ml去离子水中配成溶液;

(2)将步骤(1)制得的溶液经磁力搅拌器搅拌3h后,再采用旋转蒸发仪蒸除溶剂得到粗凝胶;

(3)将4.875mol的甲醇加入所述步骤(2)制得的粗凝胶中,再经磁力搅拌器搅拌1.5h后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到纯净凝胶;

(4)将步骤(3)制得的纯净凝胶加入到20ml甲醇和20ml松油醇的混合液中,制成y、ba和cu三种金属总离子浓度为3.0mol/l的溶液。将所得的含有y、ba和cu的甲醇和松油醇溶液搅拌均匀,再加入乙酰丙酮钛,所加入的乙酰丙酮钛为所述的含有y、ba和cu三种金属溶液中y、ba和cu三种金属总离子摩尔书的10%,制备成前驱液;

(5)将步骤(4)制得的前驱液以1500转/分的速度旋涂在铝酸镧单晶基片上,旋涂时间为90s。

(6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行热分解和烧结,最后得到含有纳米钛酸钡的四方相ybco膜。

热分解是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为130hpa,从室温平均以40℃/h的升温速率升温至500℃,然后再炉冷却至室温。整个分解时间为10h。

烧结是在湿润的氧气和氩气混合气氛下进行,把500sccm含有500ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为240hpa,先以400℃/h的升温速率升至最高温850℃,然后以100℃/h降温至550℃,在550℃的纯氧气氛围(干燥)中保温1.5h使四方相的ybco吸氧转变为正交相的具有超导性能的ybco(ybco超导薄膜前体),随后样品在氧气氛围下炉冷至室温。

(9)采用将上述制备的ybco超导薄膜前体采用剂量为1018/cm2、辐射角度为90°的氢质子轰击,获得最终样品,即ybco超导薄膜。

采用综合物性测量(ppms)对样品进行了m-h测试,通过bean模型对样品的临界电流密度进行了计算,结果如图5所示,得到的ybco超导薄膜在77k、零场下的临界电流密度为10.1ma/cm2,说明经过氢质子轰击的含有钛酸钡的ybco薄膜的临界电流密度大大提高。

实施例4

(1)称取乙酸钇、乙酸钡和乙酸铜分别为0.02mol、0.041mol和0.06mol,将乙酸钇、乙酸钡和乙酸铜混合后溶于含30mol%的三氟乙酸的300ml去离子水中配成溶液;

(2)将步骤(1)制得的溶液经磁力搅拌器搅拌3h后,再采用旋转蒸发仪蒸除溶剂得到粗凝胶;

(3)将4.875mol的甲醇加入所述步骤(2)制得的粗凝胶中,再经磁力搅拌器搅拌1.5h后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到纯净凝胶;

(4)将步骤(3)制得的纯净凝胶加入到20ml甲醇和20ml松油醇的混合液中,制成y、ba和cu三种金属总离子浓度为3.0mol/l的溶液。将所得的含有y、ba和cu的甲醇和松油醇溶液搅拌均匀,再加入乙酰丙酮钛,所加入的乙酰丙酮钛为所述的含有y、ba和cu三种金属溶液中y、ba和cu三种金属总离子摩尔书的10%,制备成前驱液;

(5)将步骤(4)制得的前驱液以5毫米/分的提拉速度涂覆在氧化镁单晶基片上。

(6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行热分解和烧结,最后得到含有纳米钛酸钡的四方相ybco膜。

热分解是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为160hpa,从室温平均以40℃/h的升温速率升温至500℃,然后再炉冷却至室温。整个分解时间为10h。

烧结是在湿润的氧气和氩气混合气氛下进行,把500sccm含有500ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为240hpa,先以400℃/h的升温速率升至最高温850℃,然后以100℃/h降温至550℃,在550℃的纯氧气氛围(干燥)中保温1.5h使四方相的ybco吸氧转变为正交相的具有超导性能的ybco(ybco超导薄膜前体),随后样品在氧气氛围下炉冷至室温。

(10)采用将上述制备的ybco超导薄膜前体采用剂量为1018/cm2、辐射角度为90°的氢质子轰击,获得最终样品,即ybco超导薄膜。

图6是ybco超导薄膜的临界转变温度曲线。从图6可以看出,ybco超导薄膜的临界转变温度为92k左右,与纯ybco相当。采用综合物性测量(ppms)对样品进行了m-h测试,通过bean模型对样品的临界电流密度进行了计算,结果如图7所示,可以看出,在77k、零场下的临界电流密度为10.1ma/cm2,远高于未辐照样品的临界电流密度。

以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1