一种制备高纯超细氧化铋的方法与流程

文档序号:27426609发布日期:2021-11-17 20:28阅读:474来源:国知局
一种制备高纯超细氧化铋的方法与流程

1.本发明涉及氧化铋制备技术领域,具体为一种制备高纯超细氧化铋的方法。


背景技术:

2.氧化铋纯品有α型、β型和δ型。α型为黄色单斜晶系结晶,相对密度8.9,熔点825℃,溶于酸,不溶于水和碱。β型为亮黄色至橙色,正方晶系,相对密度8.55,熔点860℃,溶于酸,不溶于水。容易被氢气、烃类等还原为金属铋。δ-bi2o3是一种特殊的材料,具有立方萤石矿型结构,其晶格中有1/4的氧离子位置是空缺的,因而具有非常高的氧离子导电性能。氧化铋主要应用对象有电子陶瓷粉体材料、电解质材料、光电材料、高温超导材料、催化剂。氧化铋作为电子陶瓷粉体材料中的重要添加剂,纯度一般要求在99.15%以上,主要应用对象有氧化锌压敏电阻、陶瓷电容、铁氧体磁性材料三类。
3.而现有的氧化铋在生产的过程中,存在提纯除杂麻烦的现象,使得对应的生产出的电子陶瓷整体的稳定性不高,电子陶瓷在进行高温的时候,会出现开裂的现象,存在一定的安全隐患,一定程度上降低了电子陶瓷的实用性。


技术实现要素:

4.(一)解决的技术问题
5.针对现有技术的不足,本发明提供了一种制备高纯超细氧化铋的方法,解决了上述背景技术提到的问题。
6.(二)技术方案
7.为实现以上目的,本发明通过以下技术方案予以实现:一种制备高纯超细氧化铋的方法,包括以下重量份配比的原料:bi(no3)3·
5h2o为30份、酸溶液为30份、naoh溶液为15~25份、hcl溶液为10份、氯化钠晶体为5份、催化剂为5份;
8.该制备高纯超细氧化铋的方法,包括以下工艺步骤:
9.步骤一,溶解除杂,将bi(no3)3·
5h2o放置在反应皿中,然后将bi(no3)3·
5h2o溶解在酸溶液的混合溶液中,静止2h后向混合溶液中加入氯化钠晶体,然后对混合溶液进行加热,加热温度为70~80℃,加热时间为10min,且加热的时候不断的对混合溶液进行搅拌,搅拌速度为3000r/min,然后对混合溶液进行过滤;
10.步骤二,ph值调整,将步骤一中的混合溶液进行降温,使其温度降至25℃,然后向混合溶液中加入naoh溶液,对混合溶液进行ph值的调整,直到混合溶液的ph值为6.5~6.8;
11.步骤三,催化反应,将步骤二中的混合溶液进行水浴加热,加热温度为75~95℃,加热时间为2h,加热够得到粘度为25~55pa
·
s的混合溶液,向混合溶液中加入催化剂,并对其进行搅拌,搅拌的速度为3500r/min,搅拌的时间为3min,然后对混合溶液进行加压处理,压强为700~900pa,加压时间为1h;
12.步骤四,前驱体溶液制备,向步骤三中的混合溶液中加入hcl溶液,然后对混合溶液进行搅拌,搅拌速度为4000r/min,搅拌时间为15min,制得前驱体溶液;
13.步骤五,清洗提纯,向步骤四中的前驱体溶液中加入去离子水,通过去离子水对前驱体溶液进行5~8的清洗,去除前驱体中的钠离子,然后对前驱体进行加热烘干,加热烘干的温度为110~130℃,加热烘干的时间为3h,加热烘干后得bi2o3粉末;
14.步骤六,煅烧和气流粉碎,对步骤五中的bi2o3粉末进行煅烧,煅烧的温度为650~750℃,煅烧时间为5~10min,得高纯度的bi2o3固体,然后对bi2o3固体进行气流粉碎,所述气流粉碎采用的是流化床式气流粉碎分级,粉碎成bi2o3粉末,bi2o3粉末的粒径为0.8~2.0μm。
15.优选的,所述酸溶液为稀硫酸和硝酸的混合溶液,其中稀硫酸的浓度为0.4~0.6mol/l,硝酸的浓度为0.5~0.7mol/l,且稀硫酸与硝酸的摩尔比为1:1。
16.优选的,所述bi(no3)3·
5h2o的浓度为0.8~0.95mol/l。
17.优选的,所述naoh溶液的浓度为1.2~1.4mol/l。
18.优选的,所述hcl溶液的浓度为0.5~0.7mol/l。
19.优选的,所述催化剂由氧化铝和氧化镁组成的,其摩尔占比为1~1.5:1。
20.优选的,所述氯化钠晶体的纯度为95%以上,且氯化钠晶体的粒径不超过20目。
21.优选的,步骤一中对混合溶液进行过滤,过滤采用的滤纸为无灰滤纸,其灰分小于0.08mg。
22.优选的,步骤三中向混合溶液中加入催化剂,采用的逐滴加入的方式,且在加入的过程中不断的对溶液进行搅拌。
23.(三)有益效果
24.本发明提供了一种制备高纯超细氧化铋的方法。具备以下有益效果:
25.(1)、本发明制备方法中利用bi(no3)3·
5h2o、酸溶液、离子交换除钠、结晶提纯的工艺,能够有效降低氧化铋中杂质含量,且在生产过程中不会有新的杂质出现,从而获得高纯结晶氧化铋,能够有效的提高电子陶瓷在进行高温环境中的稳定性,降低危险发生的可能,较大幅度的提高了电子陶瓷的实用性。
26.(2)、本发明制备高纯超细氧化铋的工艺简单,无需复杂的流程和相关设备,且原料易得,成本低,利于规模化生产,制备出的氧化铋纯度高,且具有颗粒细小,粒度均匀,粉体团聚少、品质高,无需二次研磨的优点。
附图说明
27.图1为本发明程序流程示意图。
具体实施方式
28.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
29.实施例1
30.请参阅图1,本发明提供一种技术方案:一种制备高纯超细氧化铋的方法,包括以下重量份配比的原料:bi(no3)3·
5h2o为30份、酸溶液为30份、naoh溶液为15~25份、hcl溶
液为10份、氯化钠晶体为5份、催化剂为5份;
31.该制备高纯超细氧化铋的方法,包括以下工艺步骤:
32.步骤一,溶解除杂,将bi(no3)3·
5h2o放置在反应皿中,然后将bi(no3)3·
5h2o溶解在酸溶液的混合溶液中,静止2h后向混合溶液中加入氯化钠晶体,然后对混合溶液进行加热,加热温度为70~80℃,加热时间为10min,且加热的时候不断的对混合溶液进行搅拌,搅拌速度为3000r/min,然后对混合溶液进行过滤;
33.步骤二,ph值调整,将步骤一中的混合溶液进行降温,使其温度降至25℃,然后向混合溶液中加入naoh溶液,对混合溶液进行ph值的调整,直到混合溶液的ph值为6.5~6.8;
34.步骤三,催化反应,将步骤二中的混合溶液进行水浴加热,加热温度为75~95℃,加热时间为2h,加热够得到粘度为25~55pa
·
s的混合溶液,向混合溶液中加入催化剂,并对其进行搅拌,搅拌的速度为3500r/min,搅拌的时间为3min,然后对混合溶液进行加压处理,压强为700~900pa,加压时间为1h;
35.步骤四,前驱体溶液制备,向步骤三中的混合溶液中加入hcl溶液,然后对混合溶液进行搅拌,搅拌速度为4000r/min,搅拌时间为15min,制得前驱体溶液;
36.步骤五,清洗提纯,向步骤四中的前驱体溶液中加入去离子水,通过去离子水对前驱体溶液进行5~8的清洗,去除前驱体中的钠离子,然后对前驱体进行加热烘干,加热烘干的温度为110~130℃,加热烘干的时间为3h,加热烘干后得bi2o3粉末;
37.步骤六,煅烧和气流粉碎,对步骤五中的bi2o3粉末进行煅烧,煅烧的温度为650~750℃,煅烧时间为5~10min,得高纯度的bi2o3固体,然后对bi2o3固体进行气流粉碎,所述气流粉碎采用的是流化床式气流粉碎分级,粉碎成bi2o3粉末,bi2o3粉末的粒径为0.8~2.0μm。
38.本发明中值得注意的是,酸溶液为稀硫酸和硝酸的混合溶液,其中稀硫酸的浓度为0.4~0.6mol/l,硝酸的浓度为0.5~0.7mol/l,且稀硫酸与硝酸的摩尔比为1:1。
39.本发明中值得注意的是,bi(no3)3·
5h2o的浓度为0.8~0.95mol/l。
40.本发明中值得注意的是,naoh溶液的浓度为1.2~1.4mol/l。
41.本发明中值得注意的是,hcl溶液的浓度为0.5~0.7mol/l。
42.本发明中值得注意的是,催化剂由氧化铝和氧化镁组成的,其摩尔占比为1~1.5:1。
43.本发明中值得注意的是,氯化钠晶体的纯度为95%以上,且氯化钠晶体的粒径不超过20目。
44.本发明中值得注意的是,步骤一中对混合溶液进行过滤,过滤采用的滤纸为无灰滤纸,其灰分小于0.08mg。
45.本发明中值得注意的是,步骤三中向混合溶液中加入催化剂,采用的逐滴加入的方式,且在加入的过程中不断的对溶液进行搅拌。
46.实施例2
47.请参阅图1,本发明提供一种技术方案:一种制备高纯超细氧化铋的方法,包括以下重量份配比的原料:bi(no3)3·
5h2o为30份、酸溶液为30份、naoh溶液为15~25份、hcl溶液为10份、氯化钠晶体为5份、催化剂为5份;
48.该制备高纯超细氧化铋的方法,包括以下工艺步骤:
49.步骤一,溶解除杂,将bi(no3)3·
5h2o放置在反应皿中,然后将bi(no3)3·
5h2o溶解在酸溶液的混合溶液中,静止2h后向混合溶液中加入氯化钠晶体,然后对混合溶液进行加热,加热温度为80~95℃,加热时间为10min,且加热的时候不断的对混合溶液进行搅拌,搅拌速度为3000r/min,然后对混合溶液进行过滤;
50.步骤二,ph值调整,将步骤一中的混合溶液进行降温,使其温度降至20~30℃,然后向混合溶液中加入naoh溶液,对混合溶液进行ph值的调整,直到混合溶液的ph值为6.5~6.8;
51.步骤三,催化反应,将步骤二中的混合溶液进行水浴加热,加热温度为80~100℃,加热时间为2h,加热够得到粘度为25~55pa
·
s的混合溶液,向混合溶液中加入催化剂,并对其进行搅拌,搅拌的速度为3500r/min,搅拌的时间为3min,然后对混合溶液进行加压处理,压强为700~900pa,加压时间为1h;
52.步骤四,前驱体溶液制备,向步骤三中的混合溶液中加入hcl溶液,然后对混合溶液进行搅拌,搅拌速度为4000r/min,搅拌时间为15min,制得前驱体溶液;
53.步骤五,清洗提纯,向步骤四中的前驱体溶液中加入去离子水,通过去离子水对前驱体溶液进行5~8的清洗,去除前驱体中的钠离子,然后对前驱体进行加热烘干,加热烘干的温度为150~170℃,加热烘干的时间为3h,加热烘干后得bi2o3粉末;
54.步骤六,煅烧和气流粉碎,对步骤五中的bi2o3粉末进行煅烧,煅烧的温度为680~780℃,煅烧时间为5~10min,得高纯度的bi2o3固体,然后对bi2o3固体进行气流粉碎,所述气流粉碎采用的是流化床式气流粉碎分级,粉碎成bi2o3粉末,bi2o3粉末的粒径为0.8~2.0μm。
55.本发明中值得注意的是,酸溶液为稀硫酸和硝酸的混合溶液,其中稀硫酸的浓度为0.4~0.6mol/l,硝酸的浓度为0.5~0.7mol/l,且稀硫酸与硝酸的摩尔比为1:1。
56.本发明中值得注意的是,bi(no3)3·
5h2o的浓度为0.8~0.95mol/l。
57.本发明中值得注意的是,naoh溶液的浓度为1.2~1.4mol/l。
58.本发明中值得注意的是,hcl溶液的浓度为0.5~0.7mol/l。
59.本发明中值得注意的是,催化剂由氧化铝和氧化镁组成的,其摩尔占比为1~1.5:1。
60.本发明中值得注意的是,氯化钠晶体的纯度为95%以上,且氯化钠晶体的粒径不超过20目。
61.本发明中值得注意的是,步骤一中对混合溶液进行过滤,过滤采用的滤纸为无灰滤纸,其灰分小于0.08mg。
62.本发明中值得注意的是,步骤三中向混合溶液中加入催化剂,采用的逐滴加入的方式,且在加入的过程中不断的对溶液进行搅拌。
63.实施例3
64.请参阅图1,本发明提供一种技术方案:一种制备高纯超细氧化铋的方法,包括以下重量份配比的原料:bi(no3)3·
5h2o为30份、酸溶液为30份、naoh溶液为15~25份、hcl溶液为10份、氯化钠晶体为5份、催化剂为5份;
65.该制备高纯超细氧化铋的方法,包括以下工艺步骤:
66.步骤一,溶解除杂,将bi(no3)3·
5h2o放置在反应皿中,然后将bi(no3)3·
5h2o溶解
在酸溶液的混合溶液中,静止2h后向混合溶液中加入氯化钠晶体,然后对混合溶液进行加热,加热温度为70~80℃,加热时间为20min,且加热的时候不断的对混合溶液进行搅拌,搅拌速度为3000r/min,然后对混合溶液进行过滤;
67.步骤二,ph值调整,将步骤一中的混合溶液进行降温,使其温度降至25℃,然后向混合溶液中加入naoh溶液,对混合溶液进行ph值的调整,直到混合溶液的ph值为6.5~6.8;
68.步骤三,催化反应,将步骤二中的混合溶液进行水浴加热,加热温度为75~95℃,加热时间为3h,加热够得到粘度为25~55pa
·
s的混合溶液,向混合溶液中加入催化剂,并对其进行搅拌,搅拌的速度为3500r/min,搅拌的时间为5min,然后对混合溶液进行加压处理,压强为700~900pa,加压时间为1h;
69.步骤四,前驱体溶液制备,向步骤三中的混合溶液中加入hcl溶液,然后对混合溶液进行搅拌,搅拌速度为4000r/min,搅拌时间为20min,制得前驱体溶液;
70.步骤五,清洗提纯,向步骤四中的前驱体溶液中加入去离子水,通过去离子水对前驱体溶液进行5~8的清洗,去除前驱体中的钠离子,然后对前驱体进行加热烘干,加热烘干的温度为110~130℃,加热烘干的时间为5h,加热烘干后得bi2o3粉末;
71.步骤六,煅烧和气流粉碎,对步骤五中的bi2o3粉末进行煅烧,煅烧的温度为650~750℃,煅烧时间为8~12min,得高纯度的bi2o3固体,然后对bi2o3固体进行气流粉碎,所述气流粉碎采用的是流化床式气流粉碎分级,粉碎成bi2o3粉末,bi2o3粉末的粒径为0.8~2.0μm。
72.本发明中值得注意的是,酸溶液为稀硫酸和硝酸的混合溶液,其中稀硫酸的浓度为0.4~0.6mol/l,硝酸的浓度为0.5~0.7mol/l,且稀硫酸与硝酸的摩尔比为1:1。
73.本发明中值得注意的是,bi(no3)3·
5h2o的浓度为0.8~0.95mol/l。
74.本发明中值得注意的是,naoh溶液的浓度为1.2~1.4mol/l。
75.本发明中值得注意的是,hcl溶液的浓度为0.5~0.7mol/l。
76.本发明中值得注意的是,催化剂由氧化铝和氧化镁组成的,其摩尔占比为1~1.5:1。
77.本发明中值得注意的是,氯化钠晶体的纯度为95%以上,且氯化钠晶体的粒径不超过20目。
78.本发明中值得注意的是,步骤一中对混合溶液进行过滤,过滤采用的滤纸为无灰滤纸,其灰分小于0.08mg。
79.本发明中值得注意的是,步骤三中向混合溶液中加入催化剂,采用的逐滴加入的方式,且在加入的过程中不断的对溶液进行搅拌。
80.本发明制备方法中利用bi(no3)3·
5h2o、酸溶液、离子交换除钠、结晶提纯的工艺,能够有效降低氧化铋中杂质含量,且在生产过程中不会有新的杂质出现,从而获得高纯结晶氧化铋,能够有效的提高电子陶瓷在进行高温环境中的稳定性,降低危险发生的可能,较大幅度的提高了电子陶瓷的实用性,本发明制备高纯超细氧化铋的工艺简单,无需复杂的流程和相关设备,且原料易得,成本低,利于规模化生产,制备出的氧化铋纯度高,且具有颗粒细小,粒度均匀,粉体团聚少、品质高,无需二次研磨的优点
81.尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换
和变型,本发明的范围由所附权利要求及其等同物限定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1