锂过量过渡金属缺乏的尖晶石用于快速充电/放电锂离子电池材料

文档序号:28942537发布日期:2022-02-18 10:48阅读:89来源:国知局
锂过量过渡金属缺乏的尖晶石用于快速充电/放电锂离子电池材料

本发明涉及一类锂过量、过渡金属缺乏的尖晶石用于快速充电/放电的锂离子(Li-ion)材料,例如锂离子电池材料(例如,锂离子负极)。本发明的锂离子材料,其特征在于:(i)锂过量;(ii)部分阳离子无序;和(iii)总阳离子与阴离子比例在3:4和1:1之间。这些条件能够提供超高容量和快速充电/放电速率性能,并允许部分氟替代氧,以实现改进的循环寿命。

背景技术

在以下公开的结尾提供了参考文献清单,这些参考文献被认为对相关技术的背景方面和现有技术具有潜在的信息。本公开本身引用了一些所列出的参考文献。每个所列出的参考文献通过引用将其完整内容并入本文中。

为了实现具有长行驶里程、短充电时间和即时加速的大众市场电动汽车,迫切需要能够在短时间内储存和释放大量电荷的锂离子电池材料,例如锂离子负极。1,2通常,现有技术的高速率锂离子电池材料是基于聚阴离子化合物,例如LiFePO4。然而,这些聚阴离子化合物中的重聚阴离子基团不可避免地降低了其重量能量密度和体积能量密度。

尖晶石以前曾被探索为高压材料,尽管先前的研究主要集中在化学计量和接近理想公式LiTM2O4(TM=过渡金属)的组合物上,其偏差有限(Li、TM或阴离子种类的每个化学式单位<0.2),并且仅依靠过渡金属来补偿循环过程中的电荷转移。在Li被TM取代的情况下,例如Li5/3Ti4/3O4,总阳离子与阴离子比例保持化学计量(即3:4)。



技术实现要素:

本发明反映了与基于聚阴离子基团的锂离子电池材料(例如LiFePO4)相关的方法的偏离。本发明的材料包括那些具有紧密堆积的面心立方(FCC)岩盐型结构的材料,这种结构有利于密集的能量储存,以及类似尖晶石的阳离子排序,这种排序有利于Li的传输动力学。在紧密堆积的岩盐型结构中,在各种类型的阳离子排序构型中,尖晶石状阳离子排序能够通过没有面共享的过渡金属(TM)的四面体中间位点(即所谓的0-TM通道)进行最低能量的Li迁移,因此允许在任何给定的Li水平上获得最大的动力学上可获得的Li容量3

与本发明相关的尖晶石氧化物和氟氧化物组在Li过量、TM缺乏和氟化水平(当存在时)方面同时具有大的和多种程度的可调谐性。本发明的尖晶石在几个方面与现有的尖晶石化合物不同。(i)本发明的尖晶石组分与理想尖晶石的组分有较大的偏差,本发明的尖晶石组分具有以下式子:Li1+xTM2-yO4-zFz(0.2≤x≤1,0.2≤y≤0.6,0≤z≤0.8,TM=Mn、Ni、Co、Al、Sc、Ti、Zr、Mg、Nb(可以是单个TM元素或多个TM的组合)。达到的最大氟化水平,即每化学式单位0.8,比文献中报道的要高得多,即每化学式单位4个阴离子中约0.2。(ii)这些式子的阳离子亚晶格(sublattice)都是超过化学计量(over-stoichiometric)的,也就是说,阳离子与阴离子的比例(原子)大于3:4但又小于1:1(3:4<r<1:1)。(iii)TM种类在两组八面体位点之间,即16c和16d Wyckoff位点无序,而传统尖晶石的TM种类限制在一组八面体位点。这种TM无序也对电化学循环过程中的电压曲线有影响。(iv)本发明的尖晶石被认为是唯一在其充电/放电过程中利用氧的氧化还原的尖晶石,氧的氧化还原的激活被认为是由于这些组合物中Li过量和TM缺乏的非常规高水平所导致。

在一个示例中,根据本发明的材料是通过工业上可扩展的机械化学方法获得。因此所获得的材料同时显示出特别高的能量密度和出色的速率性能。本发明化合物的特点是最大重量能量密度在1000至1155Wh/kg之间,远远高于传统尖晶石(例如,LiMn2O4为<800Wh/kg或LiNi0.5Mn1.5O4<950Wh/kg)。特别是,本发明的材料在20A g-1的极快的充电/放电速率下保持>100mAh/g的高容量。此外,使用高能球磨方法,可以系统地独立调整Li、TM和F的含量,以达到优化的性能。

根据本发明的材料适合用作可充电锂电池的阴极、阳极和电解质材料。尽管下面的讨论可能涉及具体的示例(例如,只针对阴极的示例),但可以理解的是,这种示例是非限制性的,而且本发明同样适用于其他用途(例如,阳极、电解质等)。

下面通过说明的方式对本发明的实施例进行描述。实施本发明的其他方法和所描述的实施例的变化可由熟练的从业人员构建,并被视为在本发明的范围内。

附图说明

图1A和1B分别显示了LMOF03和LMOF06的扫描电子显微镜图像(比例尺:200nm);

图2显示了LMOF03、LMOF06和LiF在原始样品粉末上以60kHz MAS获得的19F自旋回波ssNMR光谱;

图3A-3D显示了LMOF03在室温下使用四组飞行时间(TOF)中子衍射数据进行的Rietveld精修;

图4A-4D显示了LMOF06在室温下使用四组TOF中子衍射数据进行的Rietveld精修;

图5A-5E显示了LMOF03的高分辨率TEM图像,以及电子衍射成像,并有Mn、O和F的EDS映射(mapping);

图6A-6E显示了LMOF06的高分辨率TEM图像,以及电子衍射成像,并有Mn、O和F的EDS映射;

图7A-7F显示了LMOF03(图7A-7C)和LMOF06(图7D-7F)在50mA g-1下的恒流循环性能;

图8A-8C显示了LMOF03(图8A)和LMOF06(图8B)在不同速率下的恒流充电/放电曲线,并与现有技术的阴极(图8C)进行比较;

图9A-9C显示了LMOF03在第一次循环和第二次充电期间选定的充电和放电状态下的Mn K边的归一化XANES光谱;

图10A-10C显示了LMOF06在第一次循环和第二次充电期间选定的充电和放电状态下Mn K边的归一化XANES光谱;

图11A-11F显示了由RIXS探测的LMOF03中氧在不同充电和放电状态下的电子结构;

图12显示了具有混合TM种类的其他组合物的X射线衍射图(CuKα,室温);

图13显示了具有不同Li含量的其他组合物的X射线衍射图(CuKα,室温);

图14显示了理想尖晶石(左)和部分阳离子无序的尖晶石(右)的并列比较;以及

图15显示了LiMn2O4的电压曲线。

具体实施方式

本发明的材料包括尖晶石氧化物和氟氧化物,它们在Li过量、TM缺乏和氟化水平(当存在时)方面同时具有大的和多种程度的可调谐性。本发明的尖晶石在几个方面与现有的尖晶石化合物不同。(i)本发明的尖晶石组分与普通尖晶石的组分有较大的偏差,本发明的尖晶石组分具有以下式子:Li1+xTM2-yO4-zFz(0.2≤x≤1,0.2≤y≤0.6,0≤z≤0.8,TM=Mn、Ni、Co、Al、Sc、Ti、Zr、Mg、Nb(可以是单个TM元素或多个TM的组合)。在优选的实施例中,通式的特征可以是具有较窄的选择范围的一个或多个(包括任何可用的组合或子组合)前述的变量——例如,(0.4≤x≤1.0,0.3≤y≤0.6和0.2≤z≤0.8)的特点。本发明实现的最大氟化水平,即每化学式单位0.8,远远高于文献中报道的每化学式单位约0.2。(ii)这些式子的阳离子亚晶格都是超过化学计量的,也就是说,阳离子与阴离子的比例(原子)大于3:4但又小于1:1(3:4<r<1:1)。(iii)TM种类在两组八面体位点之间,即16c和16d Wyckoff位置之间无序,而传统尖晶石的TM种类限制在一组八面体位点。这种TM无序也对电化学循环过程中的电压曲线有影响。(iv)本发明的尖晶石被认为是唯一在其充电/放电过程中利用氧的氧化还原的尖晶石,氧的氧化还原的激活被认为是由于这些组合物中Li过量和TM缺乏的非常规高水平所导致。尽管在本发明的许多应用中氧氟化物是有利的(包括大于0.2最大0.8的z值),正如上文在0≤z≤0.8的范围内包含“0”所看到的,本发明也包括满足上式的尖晶石氧化物。

图14展示了理想尖晶石(左)和部分阳离子无序的尖晶石(右)之间的视觉比较。在理想的尖晶石中,16d八面体位点完全被TM占据,而16c八面体位点是空的;Li完全占据8a四面体位点。在部分阳离子无序的尖晶石中,TM在16c和16d位点之间部分无序,而Li则分布在8a、16c和16d的每个位点之间。

在一个示例中,Li1.68Mn1.6O3.7F0.3(“LMOF03”)和Li1.68Mn1.6O3.4F0.6(“LMOF06”)是通过使用Retsch PM200行星式球磨机混合的化学计量的Li2MnO3、MnF2、Mn2O3和MnO2合成。批量为1g的前体粉末,与5个10mm(直径)和10个5mm(直径)的不锈钢球,被分配到50ml的不锈钢罐中,然后在充满氩气的手套箱中用安全封闭夹进行密封。对于LMOF03和LMOF06,分别经过25和21小时的高能球磨,通过机械化学方法得到了相纯的产品。在其他示例中,可以使用不同的前体,例如Li2O、LiF、Mn2O3和MnO2,也可以用稍微不同的研磨时间获得目标化合物。

将LMOF03和LMFO06用于在充满氩气的手套箱中制造阴极电极。首先将活性材料(70wt%)与Super C65炭黑(Timcal,20wt%)在研钵中手动混合45分钟。在加入聚四氟乙烯(PTFE,Dupont,10wt%)作为粘合剂后,将混合物卷成薄膜,以作为阴极使用。阴极薄膜的负载密度为约5mg/cm2。钮扣电池(CR2032)是通过使用1M LiPF6在碳酸乙烯酯和碳酸二甲酯溶液中(EC/DMC的体积比为1:1)作为电解质,玻璃微纤维滤纸(Whatman)作为隔膜,以及Li金属箔(FMC)作为阳极来组装的。然后,在室温下在Arbin电池循环器上对密封的纽扣电池进行测试。对于高电流密度下的速率能力测试,从100到20000mA g-1,阴极薄膜中活性材料、碳黑和粘合剂的重量比为40:50:10,阴极薄膜的负载密度为2-3mg/cm2

元素分析是用直流等离子体发射光谱法(ASTM E 1097-12)分析金属种类,用离子选择性电极法(ASTM D1179-16)分析氟中子粉末衍射和全散射实验是在橡树岭国家实验室(Oak Ridge National Laboratory)的散裂中子源的纳米尺度有序材料衍射仪(NOMAD)上进行的。用于中子实验的样品是用富含7Li的7Li2MnO3前体合成的,该前体是通过在空气中煅烧化学计量的7Li2CO3和MnO2得到的。所有的中子数据都使用TOPAS软件包进行分析。扫描TEM、电子衍射图和EDS映射是在劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)的分子实验室,在配备有X-mas EDS检测器的JEM-2010F显微镜上获得的。SEM图像也是在分子实验室的Zeiss Gemini Ultra 55分析场发射扫描电子显微镜上获得的。

在阿贡国家实验室(Argonne National Laboratory)的先进光子源(APS),在室温下以透射模式对锰K边进行了硬X射线吸收光谱(XAS)测量。在劳伦斯伯克利国家实验室的先进光源(ALS)进行了O K边的共振非弹性X射线散射(RIXS)。

LMOF03和LMOF06的球磨颗粒的扫描电子显微镜图像分别在图1A和1B中显示。根据这些图像,估计LMOF03的主要颗粒尺寸为100-200nm,LMOF06为100-300nm。图2显示了LMOF03、LMOF06和LiF粉末的19F固态自旋回波ssNMR图谱。获得的光谱是19F自旋回波ssNMR光谱,在60kHz MAS下,在原始样品粉末上;并且图中说明了根据实验中的扫描次数和NMR转子中的样品量而缩放的光谱。NMR光谱包含有关F离子周围化学环境的信息。合成的LMOF03和LMOF06都显示出宽信号(broad signal),跨越了广泛的化学位移范围,这与LiF以-204ppm为中心的尖锐信号(sharp signal)明显不同。这表明LMOF03和LMOF06的尖晶石中都掺入了大量的氟。虽然观察到一些抗磁性信号(diamagnetic signal)(在LMOF06中比在LMOF03中更明显),这表明存在少量杂质(例如Li2O、LiF和Li2CO3),但不能排除LiF样结构域在目标大量化合物中的贡献。下表1中的元素分析结果进一步表明,合成化合物的成分接近于目标化合物。

表1.目标与通过直流等离子发射光谱和离子选择性电极测量的LMOF03和LMOF06化合物的Li:Mn:F原子比

LMOF03和LMOF06的晶体结构通过Rietveld进行精修,使用四组飞行时间(TOF)的中子衍射数据,在室温下进行了精修。图3A-3D和4A-4D以及下面的表2、3和4显示了中子衍射和解析结构模型之间的良好一致性。晶格参数被精修为LMOF03为以及LMOF06为这两种化合物都采用了尖晶石结构(空间群:Fd-3m),具有相当数量的阳离子无序性,这与理想的尖晶石例如LiMn2O4不同,其中Li完全占据8a位点,Mn完全占据16d位点。相反,在LMOF03和LMOF06中,只有一半的8a位点被Li占据(尽管应理解为Li可能占据20-70%的任何位置),其余的Li含量广泛分布在16c和16d位点。还观察到LMOF03比LMOF06在16d位点含有更多的Li,尽管两者之间的Mn分布(通过同步辐射粉末衍射精修得到)是相当的。在不受理论约束时,人们认为这种差异可能源于不同的F含量。

表2.关于中子粉末衍射精修的详细信息

表3.中子粉末衍射精修中LMOF03的额外结构参数

表4.来自中子粉末衍射精修的LMOF06的额外结构参数

表5.关于中子粉末衍射精修的详细信息

表6.中子粉末衍生精修中Li1.46Mn1.6O3.7F0.3的额外结构参数

表7.中子粉末衍生精修中Li2Mn1.6O3.7F0.3的额外结构参数

为了进一步验证合成材料中元素成分的分布,对LMOF03和LMOF06颗粒进行TEM-EDS。图5A-5E显示了LMOF03的高分辨率透射电子显微镜(TEM)图像,以及相应的电子衍射成像与Mn、O和F的EDS映射;图6A-6E显示了LMOF06的高分辨率TEM图像,以及相应的电子衍射成像与Mn、O和F的EDS映射。从EDS映射检测到了Mn、O和F在两种材料中的均匀分布。晶体尺寸估计为图像中的颗粒的电子衍射图显示在HRTEM图像的右上角(图5A和6A),并根据尖晶石结构添加了附注。如图5A和6A的右上角所示,在LMOF03和LMOF06化合物中,在适当取向的晶粒上观察到(111)平面的特征d间距为约

结合上述中子衍射精修、NMR、TEM-EDS和元素分析,得出结论,这两种目标化合物是利用机械化学合金化(即高能球磨)成功制成的,具有部分无序的尖晶石晶格。

为了测试合成的LMOF03和LMOF06的电化学性能,在不同的电压窗口以50mA g-1的速率进行了恒流电循环试验。图7A-7C显示了LMOF03的测试结果,图7D-7F显示了LMOF06的测试结果。图7A和7D分别显示了在室温下1.5-4.8V之间LMOF03和LMOF06的初始五次循环电压曲线;图7B和7E显示了不同电压窗口中第一次循环的电压曲线;图7C和7F显示了不同电压窗口中的容量保持。其电压曲线与普通尖晶石(例如LiMn2O4或LiNi0.5Mn1.5O4)有很大的不同,后者通常在>4V和约2.7V处显示两个等长的平台,对应于Li在两个不同位点(即四面体和八面体)取出/重新插入。图15示出了LiMn2O4的电压曲线,用于与图7A和7D的LMOF03和LMOF06曲线进行比较。如图15所示,LiMn2O4的曲线呈现出延伸的平台,以及有限的重量能量密度。

对于本发明的材料,在4V以上在LMOF03和LMFO06中几乎看不到平台,取而代之的是平滑和倾斜的曲线,这对于监测电池的充电状态是有利的。只有在约2.7V时观察到小于30mA h g-1的小的平台区域。不受理论的约束,人们认为在4V时没有平台可能是由于四面体位点的Li的数量少,而且在LMOF03和LMOF06的电化学循环中观察到的有利的平滑电压曲线是受这些合成材料的两组八面体位点,例如16c和16d Wyckoff位置之间的TM无序影响的,而传统尖晶石的TM种类被限制在一组八面体位点。这种TM无序还对电化学循环过程中的电压曲线有影响,使得,在第一次循环中,从1.5-4.8V之间的放电电压曲线中的电压平台区(又称平坦电压区)提取的总容量小于50mA h g-1。倾斜的电压曲线可以解释为由TM无序引起的Li位点能量的广泛分布11。此处将放电过程中的电压平台定量定义为连续的电压曲线区域,其平均斜率大于-0.002V g mA-1h-1但小于0。还观察到,在这个电压窗口内,LMOF03和LMOF06可以提供高放电容量,分别最高达到约363mA h g-1(1103W h kg-1)和约305mA h g-1(931W h kg-1)。LMOF03和LMOF06的平均放电电压分别为3.04V和3.05V。当LMOF03在2.0-4.6V或2.0-4.4V的较窄电压窗口中循环时,其容量(和比能量)分别减少到268mA h g-1(868W h kg-1)或218mA h g-1(690W h kg-1);而LMOF06在2.0-4.6V或2.0-4.4V的较窄的电压窗口循环时,其容量(和比能量)分别减少到226mA h g-1(731W h kg-1)或207mA h g-1(657W h kg-1)。图7B和7E分别显示了LMOF03和LMOF06在不同窗口的电压滞后情况。与LMOF03相比,LMOF06的电压滞后大大减少,可能是因为其基于Mn氧化还原的理论容量更大(如用均匀间隔的虚线说明)。当x<1.0时,LMOF03的电压滞后是最明显的,这个区域氧的氧化还原作用预计会占主导地位。这两种化合物在不需要额外的涂层或电解质添加剂的情况下,作为粗制材料显示出有前途的容量保持能力——但是,可以理解,本发明仍然包括进一步存在一种或多种额外涂层或电解质添加剂的此类材料。在较窄的电压窗口,例如2-4.4V或2-4.6V,循环性能特别好,容量>200mA h g-1

使用活性材料、碳黑和PTFE的重量比为40:50:10的配方制作阴极薄膜,对两种合成材料进行速率能力测试。阴极薄膜的负载密度为约2-3mg cm-2。图8A和8B显示了LMOF03(图8A)和LMOF06(图8B)在1.5和4.8V之间的各种速率(即100、200、400、1000、2000、4000、10000和20000mA g-1)下的恒流充电/放电曲线。每个速率测试使用新的电池,电池以选定的速率充电到4.8V,然后休息1min,然后以给定的速率放电到1.5V。使用40:50:10的阴极配方,LMOF03获得的最高比能量是1155Wh/kg,LMOF06是1020Wh/kg。当以2A/g的高速率循环时,所达到的重量能量密度仍然高达823Wh/kg(LMOF03)和714Wh/kg(LMOF06)。这两种材料都表现出优异的速率能力。随着速率从100到20000mA/g的增加,LMOF03的放电能力从388下降到105mA/g(图8A),而LMOF06从333下降到113mA/g(图8B)。LMOF03和LMOF06的速率能力大大优于现有技术的阴极材料的最优化速率性能,如图8C中的Ragone图所示,比较了LMOF03和LMOF06相对于其他具有优化速率性能的现有技术材料的比能量和功率密度,如文献5-10所报道。

图9A-9C和10A-10C显示了LMOF03(图9A-9C)和LMOF06(图10A-10C)在第一次循环和第二次充电期间的归一化Mn K边XANES光谱。选择了几个有代表性的状态,包括图9A和10A中原始和Ch4.8V之间的第一充电阶段;图9B和10B中Ch4.8V和DCh1.5V之间的第一放电阶段;以及图9C和10C中,在第二次循环过程中,DCh1.5V和2Ch4.8V之间的第二充电阶段。MnF2、Mn3O4、Mn2O3和MnO2分别作为Mn2+、Mn8/3+、Mn3+和Mn4+标准。与LMOF03相比,LMOF06原始粉末的Mn氧化状态稍微降低,在被充电到4.8V时,两者都被氧化到接近Mn4+。放电时,Mn K边迁移到比原始状态更低的氧化状态,因为放电的阳极含有更多的Li,因此比原始状态减少更多Mn。

对于LMOF03,鉴于其氧的氧化还原能力大大高于理论容量,在O K边上收集了额外的共振非弹性X射线散射(RIXS)数据。结果显示在图11A-11F,其中显示了LMOF03中的氧在不同的充电和放电状态下的电子结构,其由RIXS进行探测。当被充电到4.5V时,在531eV的激发能量和524eV的发射能量处出现突出特征(在图11B、11C和11D中的每个的箭头处看到),当充电到4.8V时,这个特征的强度进一步增长。这个特征是与氧化的氧4相关的特征信号,表明LMOF03在充电过程中经历了晶格氧氧化,使其成为第一个具有氧的氧化还原的尖晶石。这也是罕见的情况,即当涉及到氧的氧化还原时,阴极表现出优异的速率性能。当放电到3.6V(图11D)时,剩余的未还原晶格氧的O K边特征持续存在,并最终在2.7V(图11E)消失。

图12展示了这类材料的化学灵活性,显示了Li1.68Mn1.4Sc0.2O3.7F0.3、Li1.68Mn1.4Al0.2O3.7F0.3和Li1.68Mn1.4Ti0.2O3.7F0.3的额外X射线衍射图,根据本发明,这些材料都可以合成尖晶石结构。图13显示了更多的示例,证明了这些具有不同Li含量的材料的可合成性。如图13所示,通过比较三种具有不同锂超过化学计量水平的样品,即Li1.46Mn1.6O3.7F0.3、Li1.68Mn1.6O3.7F0.3和Li2Mn1.6O3.7F0.3,部分TM无序在X射线衍射中表现出来。与理想的尖晶石LiTM2O4不同,其中(111)峰(在Cu源产生的X射线的约19度)应该是强度最高的(几乎是Cu源产生的X射线的约43度的(400)峰的两倍),这三个具有部分TM无序的样品都显示出(111)峰的强度降低。此外,(111)峰的强度从Li1.46Mn1.6O3.7F0.3到Li1.68Mn1.6O3.7F0.3再到Li2Mn1.6O3.7F0.3明显下降,表明TM无序更加明显,与中子精修得到的趋势一致,例如,见表2-7。还需要注意的是,在图13中,15度到大约50度之间的宽背景(broad background)来自于用于样品制备的支架和油脂以及样品中的短程有序,只有从背景中挤出(extrude)的信号才算作X射线衍射峰。

人们注意到,本技术领域的先前研究涉及尖晶石阴极,重点是低水平氟化(每化学式单位4个阴离子中<0.2个)或通过纳米尺寸优化化学计量的尖晶石的速率能力。相比之下,本发明允许在Li过量、TM缺乏和氟化水平方面有很大和多个自由度,可以通过高能球磨方法进行单独调整。如前所述,这些组合物与现有的组合物不同,例如,在以下方面:(i)这些组合物与正常尖晶石的化学计量有较大的偏差,而且氟化水平比以前达到的要高;(ii)这些组合物都有阳离子超过化学计量,即每个化学式单位的阳离子总数超过三个;(iii)这些组合物都在两个八面体位点之间有部分TM无序,即16c和16d,这导致了平滑的电压曲线,而不是正常尖晶石中典型的两平台曲线;以及(iv)它们被认为是唯一在电化学循环中使用氧的氧化还原的尖晶石。由于这些差异化的特征,几个重要的阴极指标,包括比能量、容量、循环性和速率能力,可以系统地进行单独优化。

本文所描述和要求的发明在范围上不受本文所公开的具体实施例的限制,因为这些实施例旨在说明本发明的几个方面。从前述描述中,本发明的任何等效于所示出和描述的那些实施例对于本领域技术人员来说变得显而易见。这种修改旨在落入所附权利要求的范围。上述文本中引用的所有专利和专利申请都明确地通过引用的方式全部并入本文。

参考文献

1 Kang,B.&Ceder,G.Battery materials for ultrafast charging and discharging.Nature 458,190(2009).

2 Kang,K.,Meng,Y.S.,Bréger,J.,Grey,C.P.&Ceder,G.Electrodes with high power and high capacity for rechargeable lithium batteries.Science 311,977-980(2006).

3 Urban,A.,Lee,J.&Ceder,G.The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes.Advanced Energy Materials 4,1400478(2014).

4 Yang,W.&Devereaux,T.P.Anionic and cationic redox and interfaces in batteries:Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering.Journal of Power Sources 389,188-197(2018).

5 Ji,H.et al.Hidden structural and chemical order controls lithium transport in cation---disordered oxides for rechargeable batteries.Nature communications 10,592(2019)

6 Lee,J.et al.Reversible Mn 2+/Mn 4+double redox in lithium-excess cathode materials.Nature 556,185(2018).

7 House,R.A.et al.Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox.Energy&Environmental Science 11,926-932(2018).

8 Jo,M.,Hong,Y.---S.,Choo,J.&Cho,J.Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries.Journal of The electrochemical society 156,A430-A434(2009).

9 Martha,S.K.,Nanda,J.,Veith,G.M.&Dudney,N.J.Electrochemical and rate performance study of high-voltage lithium-rich composition:Li1.2Mn0.525Ni0.175Co0.1O2.Journal of Power Sources 199,220-226(2012).

10 Noh,H.-J.,Youn,S.,Yoon,C.S.&Sun,Y.-K.Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3,0.5,0.6,0.7,0.8and 0.85)cathode material for lithium-ion batteries.Journal of power sources 233,121-130(2013).

11 Abdellahi,A.,Urban,A.,Dacek,S.,Ceder,G.Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides.Chem.Mater.2016,28,5373-5383(2016).

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1