一种AlON透明陶瓷的快速制备方法

文档序号:26103991发布日期:2021-07-30 18:15阅读:204来源:国知局
一种AlON透明陶瓷的快速制备方法

本发明属于陶瓷粉体制备技术领域,涉及一种alon透明陶瓷的快速制备方法。



背景技术:

透明氮氧化铝(alon)陶瓷具有许多优异的性能,例如较高的透光性,良好的机械强度和出色的耐化学侵蚀性,使其成为光电窗户、高温窗户、天线罩和透明装甲应用的主要候选材料。自1979年半透明的alon陶瓷被mccauley和corbin成功制备以来,它就引起了越来越多的兴趣。许多科研工作者进行了大量的工作,以制造高度透明的alon陶瓷。

alon透明陶瓷可借助传统的陶瓷工艺进行制备,主要包括高温制粉、生坯成型以及生坯的烧结致密。性能优异的粉体有利于高透光性的alon陶瓷的制备,常用的粉体制备方法有高温固相反应和碳热还原氮化法。与高温固相法方法相比,碳热还原氮化法由于其成本低廉而具有广阔的商业前景。然而,该方法需要过度球磨以使前体均匀,并且需要在高温下长期保温以获得纯相alon。烧制后的粉体还需经过长时间的球磨、烘干、过筛等工艺,进一步增加了alon粉体的生产成本。

溶液燃烧合成(scs)在制备氧化物基材料方面具有独特的优势。原料在水溶液中的均匀混合有利于合成均匀的产物;快速的氧化还原反应,可释放出大量的气体,有利于高比表面积,高活性的粉体的制备;scs具有自放热的特点,反应放出的热量可维持自身反应。选用燃烧合成制备的前驱体可在低温下实现快速氮化,氮化后的粉体借助放电等离子烧结可快速制备alon透明陶瓷。该方法工艺简单,经济高效,用该方法快速制备alon透明陶瓷还未见报道。



技术实现要素:

有鉴于此,本发明提出一种alon透明陶瓷的快速制备方法。通过溶液燃烧合成制备碳含量可控的前驱体,在配制的溶液中提前加入金属硝酸盐,制得的前驱体低温氮化后得到al2o3和aln的混合粉体,该粉体通过放电等离子烧结快速制备alon透明陶瓷。

一种alon透明陶瓷的快速制备方法,其特征在于,通过溶液燃烧合成制备碳含量可控的前驱体,粉体烧制后通过放电等离子烧结快速制备alon透明陶瓷,具体包括以下步骤:

a.称取水溶性铝盐、有机燃料、水溶性有机物以及金属硝酸盐,随后倒入适量去离子水,搅拌使化合物完全溶解;

b.将步骤a中的混合溶液加热,并不断搅拌至粘稠浆料,随后停止搅拌,继续加热过程中凝胶受热并不断膨胀,放出大量气体,燃烧反应后得到主要成分为al2o3和c的前驱体;

c.将步骤b中得到前驱体在石墨炉中,氮气氛围下氮化;

d.将步骤c中得到氮化后的粉体在空气中除碳;

e.将步骤d中除碳后的粉体倒入石墨模具中并压制;

f.将步骤e中的石墨模具放入放电等离子烧结炉中,在氮气氛围下进行加压烧结;

g.将步骤f中烧制后的陶瓷在空气中煅烧来除去残余碳。

进一步地,步骤a中所述水溶性铝盐、有机燃料、水溶性有机物以及金属硝酸盐的物质的量比为1:(0.2-1.5):(0.1-1):(1*10-6-0.01)。

进一步地,所述水溶性铝盐为硝酸铝、氯化铝、硫酸铝中的一种或多种,有机燃料为尿素、甘氨酸、柠檬酸的一种或多种,水溶性有机物为可溶性淀粉、柠檬酸、蔗糖、麦芽糖、葡萄糖中的一种或多种,金属硝酸盐为硝酸镁、硝酸镧、硝酸锰、硝酸钇、硝酸钙的一种或多种。

进一步地,步骤b中所述加热温度为200-600℃,燃烧所得al2o3和c的混合物的含碳量在4.0-7.0wt%。

进一步地,步骤c中所述加热温度为1200-1700℃,保温0.1-10h,烧制所得al2o3和aln的混合粉体,粒径在0.1-10μm之间,可直接干压成型。

进一步地,步骤d中所述的除碳温度为500-900℃,保温0.1-10小时。

进一步地,步骤e中所述的粉体干压压力为5-70mpa,保压1-30min。

进一步地,步骤f中所述的烧结温度为1500-1900℃,升温速率为30-300℃/min,加压20-80mpa,保温1-30min。

进一步地,步骤g中所述的除碳温度为700-1300℃,保温时间0.1-10小时。

进一步地,步骤g中所述的烧结后的陶瓷透光率可达75%,晶粒尺寸在1-200μm之间,维氏硬度在15.6-17.1gpa之间。

本发明的技术有以下的优势:

(1)通过溶液燃烧合成制备碳含量可控的前驱体,在配制的溶液中提前加入金属硝酸盐,制得的前驱体低温氮化后得到al2o3和aln的混合粉体,该粉体通过放电等离子烧结快速制备alon透明陶瓷。

(2)通过溶液制备前驱体可以在配制溶液的过程中提前加入添加剂,在溶液中可使添加剂达到分子层面的混合,非常均匀;

(3)较常规的混粉、干燥工艺,燃烧合成法可实现前驱体的快速制备,极大的提高了生产效率;

(4)燃烧合成法生产的前驱体可实现al2o3和c的均匀混合,且接触紧密,粉体粒径小,极大的提高了粉体活性,可在低温下实现快速氮化;

(5)燃烧合成具有自放热的优点,释放的热量可以维持反应。且反应时间短,效率高,可迅速释放出大量的气体,因此获得的粉体比表面积大、反应活性高。

(6)烧制后所得的al2o3和aln混合粉体粒径小,有利于后期的烧结致密化;

(7)提前加入的添加剂在al2o3和aln混合粉体中均匀分布,在放电等离子烧结的快速升降温下,可实现快速致密化,极大的提高alon透明陶瓷的制备效率。

(8)烧结后的陶瓷透光率可达75%,晶粒尺寸在1-200μm之间,维氏硬度在15.6-17.1gpa之间

综上所述,本发明提供的一种alon透明陶瓷的快速制备方法,工艺简单,成本较低,更加适于实用,且具有产业上的利用价值。其具有上述诸多的优点及实用价值,并在同类制备方法中未见有类似的设计公开发表或使用而确属创新,其在制备方法上或功能上皆有较大的改进,在技术上有较大的进步,诚为一新颖、进步、实用的新设计。

附图说明

图1本发明实例1前驱体氮化后的xrd图谱,

图2本发明实例1制备alon粉体的tem图谱,

图3本发明实例1制备alon块体的xrd图谱。

具体实施方式

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合较佳实施例,对依据本发明提出的一种alon透明陶瓷的快速制备方法其具体实施方式、步骤、特征详细说明如后。

实施例1

称取硝酸铝1mol,葡萄糖0.55mol,尿素0.9mol,硝酸钇0.4mmol,硝酸镧0.1mmol,随后加入适量去离子水并搅拌溶解。将混合溶液加热,并不断搅拌,在加热过程中放出大量气体,凝胶不断膨胀发生燃烧反应,燃烧后得到al2o3和c的混合物,将得到的al2o3和c的混合物粉碎并过200目筛网,将过筛后的前驱体在1500℃下通氮气保温30min得到al2o3和aln的混合产物。将烧制得到的粉体在空气中900℃下除碳2小时。将除碳后的粉体倒入圆柱形的石墨模具中,并在30mpa的压力下保压5min。将压好的石墨模具放入放电等离子烧结炉中,200℃/min升温速率,升温到1700℃,保温5min。烧制后的陶瓷可在空气中1200℃,保温2小时来除去残留的碳。得到的陶瓷透光率75%,平均晶粒尺寸为30μm,维氏硬度16.59gpa的alon透明陶瓷。

实施例2

称取硝酸铝1mol,葡萄糖0.42mol,尿素1.1mol,硝酸钙0.6mmol,硝酸镧0.1mmol,随后加入适量去离子水并搅拌溶解。将混合溶液加热,并不断搅拌,在加热过程中放出大量气体,凝胶不断膨胀发生燃烧反应,燃烧后得到al2o3和c的混合物。将得到的al2o3和c的混合物粉碎并过200目筛网,将过筛后的前驱体在1450℃下通氮气保温1小时得到al2o3和aln的混合产物,将烧制得到的粉体在空气中850℃下除碳3小时。将除碳后的粉体倒入圆柱形的石墨模具中,并在30mpa的压力下保压5min。将压好的石墨模具放入放电等离子烧结炉中,150℃/min升温速率,升温到1600℃,保温5min。烧制后的陶瓷可在空气中1000℃,保温5小时来除去残留的碳。得到的陶瓷透光率73%,平均晶粒尺寸为50μm,维氏硬度15.59gpa的alon透明陶瓷。

实施例3

称取硫酸铝1mol,葡萄糖0.38mol,尿素1.35mol,硝酸镁0.8mmol,硝酸钇0.3mmol,随后加入适量去离子水并搅拌溶解。将混合溶液加热,并不断搅拌,在加热过程中放出大量气体,凝胶不断膨胀发生燃烧反应,燃烧后得到al2o3和c的混合物。将得到的al2o3和c的混合物粉碎并过200目筛网,将过筛后的前驱体在1400℃下通氮气保温2小时得到al2o3和aln的混合产物,将烧制得到的粉体在空气中900℃下除碳5小时。将除碳后的粉体倒入圆柱形的石墨模具中,并在30mpa的压力下保压5min。将压好的石墨模具放入放电等离子烧结炉中,200℃/min升温速率,升温到1600℃,保温5min。烧制后的陶瓷可在空气中1200℃,保温2小时来除去残留的碳。得到的陶瓷透光率75%,平均晶粒尺寸为40μm,维氏硬度16.59gpa的alon透明陶瓷。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容做出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1