一种介电陶瓷材料及其制备方法

文档序号:28724892发布日期:2022-01-29 15:37阅读:430来源:国知局
一种介电陶瓷材料及其制备方法

1.本发明涉及陶瓷电容器电介质材料领域,具体涉及一种介电陶瓷材料及其制备方法。


背景技术:

2.目前由于对化石能源的依赖和使用,地球污染日趋严重。因此开发新的能源材料是科学研究中的一个日益严峻的问题。电能作为清洁并可再生能源的代表,广泛的应用于生产生活的各个领域,常用的储存电能的主要形式是通过锂、锰、钒、铅等电池基材料来实现,虽然这些电池可以储存大量的电能,但是循环使用的性能不佳,并且因为电池失效而产生的二次污染较重,不能大规模的应用于大功率机械设备中。电容器具有充电时间短,使用寿命长,放电密度大等优点,可以用于各种不良的使用环境,但是若想将电容器作为动力源,能量储存密度不够高是限制它应用的重要缺点。要提升材料的储能密度主要有两种途径:一是提升材料的介电常数;二是提升材料的击穿强度。理想的具有高储能密度的电介质材料是在保持高介电常数的同时还兼顾高击穿强度,但在电介质中很难同时达到这样的双赢状态。介电常数猛增的同时通常伴随着绝缘性的下降,这使得电介质材料很容易被电压击穿。
3.陶瓷电容器在现代电子技术中应用得最为广泛,占电容器市场比例超90%。陶瓷电容器以不同陶瓷材料为电介质具有从个位数到数万不等的电介质常数。现有的陶瓷电容器的电介质材料有三类,其中ⅲ类电介质通常用于半导体陶瓷电容器,主要是srtio3基。钛酸锶(srtio3)是一种钙钛矿型高介电常数氧化物。srtio3理论介电常数值为300,这是由于ti
4+
离子具有很高的离子极化率,在srtio3立方晶体结构的tio6八面体内移动了很长的距离。此外,srtio3等三元金属氧化物的介电常数值是二元金属氧化物的数倍,并且srtio3具有良好的热稳定性。因此,它可以在很宽的温度范围内保持高电容性能,包括在室温下。因此,srtio3不仅是高性能电容器的候选材料,而且是动态随机存取存储器(dram)应用的绝缘体,特别是金属绝缘体-金属(mim)电荷存储电容器应用的绝缘体。通常srtio3基陶瓷电容器介电常数比batio3小,室温下纯srtio3材料的介电常数较低,仅为300。所以需要对srtio3材料进行半导化以及绝缘化处理,由此获得较高的介电常数。近年来,为提高钛酸锶介电性能而进行掺杂的研究极为广泛,但是由于其中载流子浓度的增大,使得改性之后的钛酸锶陶瓷的击穿强度大幅度降低,所以严重制约了巨介电陶瓷的应用。
4.因此,如何提供一种具有高介电常数,同时避免在电场下被击穿的电介质材料依然是本领域的难点。


技术实现要素:

5.本发明的目的在于提供一种介电陶瓷材料及其制备方法,其具有高介电常数,壳材料具有良好绝缘性能。
6.为实现上述目的,本发明提供如下技术方案:
7.一种介电陶瓷材料,所述陶瓷材料为核壳结构,所述核壳结构中的核结构材料为srtio3,壳结构材料为sr4ti3o
10

8.一种介电陶瓷材料的制备方法,包括以下步骤:
9.(1)将srco3与tio2按摩尔比1:1混合的固相反应得到srtio3;
10.(2)将得到的srtio3在1100℃温度下纯氢中还原2h,得到srtio
3-δ

11.(3)将所得的srtio
3-δ
与sr(no3)2在去离子水中混合,srtio
3-δ
中的sr与sr(no3)2中的sr的质量比为10:1-10:5,同时加入分散剂3ml和尿素0.4g,在磁力搅拌机上搅拌至水分蒸干得到黏性物质;
12.(4)将所得黏性物质在空气中800℃下热处理1h,得到srtio
3-sr4ti3o
10
核壳结构电介质材料粉体;
13.(5)将步骤(4)得到的核壳结构电介质材料粉体压制成片,然后在1200℃下烧结5h,得到具有巨介电系数的srtio3三类瓷,即为所述介电陶瓷材料。
14.优选地,所述分散剂为曲拉通。
15.与现有技术相比,本发明的有益效果是:
16.1)本发明通过srco3和tio2合成为srtio3,然后在高温还原气氛下使srtio3中的ti
4+
部分还原为ti
3+
,将还原后的srtio3与sr(no3)2混合,通过反应在表面形成r-p相的sr4ti3o
10
,制备成srtio
3-sr4ti3o
10
核壳结构材料。
17.2)本发明制得的介电陶瓷材料的介电常数为10000,具有高介电常数,壳材料具有良好绝缘性能,且击穿强度高。
18.3)本发明制备方法简单,可操控性强。
19.4)本发明采用原料价廉,对环境友好,有利于实现工业化生产。
附图说明
20.图1是本发明实施例中srtio3和srtio3在1100℃下氢气还原2h的xrd图;
21.图2是本发明实施例中srtio
3-sr4ti3o
10
核壳结构的xrd图;
22.图3是本发明实施例中srtio3的xps图谱:全谱(a),ti 2p(b);
23.图4是本发明实施例中srtio3在1100℃下氢气还原2h的xps图谱:全谱(a),ti 2p(b);
24.图5是本发明实施例中sto核壳结构(srtio3:sr(no3)2=10:2,质量比)介电陶瓷的介电常数。
具体实施方式
25.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
26.实施例
27.一种介电陶瓷材料的制备方法,包括以下步骤:
28.(1)按摩尔比1:1将srco3与tio2分别称取44.289和23.961g,加入含有无水乙醇的
滚磨罐中混合,在滚磨机中滚磨48h,然后在60℃下烘干,研磨,得到混合粉体1,将所得的混合粉体1压制成片,然后在空气中1150℃煅烧5h,得到srtio3,将所得的srtio3片捣碎,加入无水乙醇,在滚磨机中滚磨48h,然后在60℃下烘干,研磨,得到srtio3粉体;
29.(2)称取所得srtio3粉体5g,在1100℃下,纯氢气氛中还原2h,得到srtio
3-δ

30.(3)将所得的srtio
3-δ
与sr(no3)2在去离子水中混合,其中srtio
3-δ
中的sr与sr(no3)2中的sr的质量比为10:2。分别加入分散剂曲拉通3ml和尿素0.4g,在磁力搅拌机上,温度设定为80℃,搅拌至水分蒸干得到黏性物质。
31.(4)将黏性物质在空气中800℃下热处理1h,即得所需srtio
3-δ-sr4ti3o
10
核壳结构电介质材料。
32.(5)将步骤(4)得到的核壳结构电介质材料粉体压制成片,然后在1200℃下烧结5h,得到具有巨介电系数的srtio3三类瓷,即为所述介电陶瓷材料。
33.srtio
3-δ-sr4ti3o
10
核壳结构电介质材料的介电常数测量:
34.称取2组实施例1制备得到的srtio
3-δ-sr4ti3o
10
核壳材料各2.3477g,作为实验组1、2。
35.在实验组1中加入玻璃粉,srtio
3-δ-sr4ti3o
10
核壳材料和玻璃粉质量比为1:0.03;在实验组2中加入玻璃粉,srtio
3-δ-sr4ti3o
10
核壳材料和玻璃粉质量比为1:0.04。将各组研磨10min,再在各组中加入无水乙醇,继续研磨1h,以充分分散均匀,在干燥箱中80℃烘干20min。然后将实验组1和实验组2各称取0.3g,压制成直径为10mm的圆片,然后在空气中,1200℃下烧结5h,得到介电陶瓷材料。其中实验组1压制3个圆片,分别命名为样品1、样品2、样品3;实验组2压制3个圆片,分别命名为样品4、样品5、样品6。所测试的6个样品的室温下介电常数相比于纯srtio3(εr≈300)有巨大提高,最大值达到10001,同时所测试样品的介电损耗较小(tanδ<0.03),25v电压下绝缘电阻率为3.5
×
10
12
ω
·
cm。纯srtio3的抗击穿强度为100~300kv/cm,所测试样品3的抗击穿强度为310kv/cm,相比之下略微升高。
36.图1是本发明实施例中srtio3和srtio3在1100℃下氢气还原2h的xrd图。从图中可以看出srtio3在氢气还原前后均保持钙钛矿结构,从插图中可以清楚地看出,在氢气还原后,(110)衍射峰向右偏移,表明面间距变小,这是因为ti
4+
还原为ti
3+
引入了氧空位,氧空位会引起晶格收缩。图2是本发明实施例中srtio
3-sr4ti3o
10
核壳结构的xrd图,可以清楚地看出制备出了成分为sr4ti3o
10
的壳结构。图3是本发明实施例中srtio3的xps图谱:全谱(a),ti 2p(b)。未还原前srtio3仅存在ti
4+
。图4是本发明实施例中srtio3在1100℃下氢气还原2h的xps图谱:全谱(a),ti 2p(b)。从ti 2p图谱中可以看到ti
4+
和ti
3+
的存在,成功将部分ti
4+
还原为ti
3+
。图5是本发明实施例中sto核壳结构介电陶瓷的介电常数。介电常数最高达到10001,最低为9940,均远大于纯srtio3(εr≈300)。
37.以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1