一种冶金行业用复合材料陶瓷垫块的制备方法与流程

文档序号:30204250发布日期:2022-05-31 08:32阅读:175来源:国知局

1.本发明属于复合陶瓷技术领域。具体涉及一种冶金行业用复合材料陶瓷垫块的制备方法。


背景技术:

2.目前,冶金行业用高温结构件主要采用耐热钢生产制造,步进式加热炉是钢铁生产工艺主流程中关键设备,其加热钢坯的生产能力、质量和效率直接影响并决定轧钢及生产钢材的产量、质量和效益。步进式加热炉中水冷梁上的耐热钢垫块承托被加热的钢坯,是保障被加热钢坯温度的均匀性及加热质量、保障轧钢生产稳定进行的关键部件。由于耐热钢垫块存在热容高、导热系数大、高温蠕变和氧化损坏等先天性缺陷,易造成被加热钢坯出现“走偏”、与垫块接触部位产生“水冷瘢”(黑印)而影响轧材质量及成材率等突出问题,已成为制约热轧薄板等高技术钢材轧钢生产的“瓶颈”问题。为解决被加热钢坯与垫块接触部位产生的“水冷瘢”(黑印)问题,在不改变加热炉的前提下,常采用提高加热温度和延长加热时间的办法,以保证钢坯达到适当的热塑性和延展性。但此法明显存在能耗高、钢坯烧蚀量大,生产速度慢及效率低,而且耐热钢垫块会因为高温蠕变而被“压扁”损坏,造成被加热钢坯出现“走偏”、堆钢等问题,进而影响加热炉的正常生产,严重制约了行业的技术进步和经济效益。
3.将具有良好物理化学性能、强度高、高温蠕变性能优异等突出特点的高温陶瓷制造高温陶瓷部件,取代现有的耐热合金钢部件,有望解决耐热合金钢部件带来的突出问题。目前,国内外科研机构已经研究了氧化硅、碳化硅、氮化硅、氧化铝等材料及其复合材料的陶瓷垫块,部分已经获得实际应用,能够改善耐热钢垫块热导率高、高温蠕变性能差等问题。然而实际应用过程中缺陷也很突出:这些高性能结构陶瓷是典型的硬、脆的结构材料,同时温度变化对其弹塑性及高温蠕变性能的影响明显,其材料组成、微结构设计及性能调控一直是其科学研究的难点和热点;相关材料特别是复杂结构、大或小等极限尺寸的高性能陶瓷部件的制备、低损伤、少缺陷、高成品率、高精度加工是亟待突破的共性关键技术。
4.选择热膨胀系数小的组分一直是改善陶瓷材料的抗热震性、延长其使用寿命的方向之一。al2tio5陶瓷具有接近于零的热膨胀系数、低导热系数、高熔点、抗热震和抗热冲击性能优异等特性,是目前低膨胀材料中耐高温性能最好的一种。但由于强度和高温稳定性的原因使钛酸铝陶瓷未能得到广泛应用。ti3alc2材料结合了金属与陶瓷的特性,具有较的强度和模量,优异的抗水热氧化性、抗酸碱腐蚀性和抗离子辐照性;同时,像金属一样,可以进行切削加工;另外,ti3alc2不仅具备陶瓷所拥有的高屈服强度,高熔点和高热稳定性,还有良好的抗氧化性能;此外,还具备抗腐蚀性能和比mos2和石墨还优良的自润滑性能。


技术实现要素:

5.本发明旨在克服现有技术缺陷:目的在于针对现有冶金行业用耐热钢和陶瓷材质的垫块存在的技术缺陷,从而限制行业的技术进步和经济效益的问题,提供一种具有高致
密度、低热导率、优良高温强度、优异热振稳定性和耐磨性、服役寿命长等特点的al2tio
5-ti3alc2复合材料陶瓷垫块的制备方法。
6.为实现上述目的,本发明采用的技术方案是:一种冶金行业用复合材料陶瓷垫块的制备方法,包括以下几种步骤:(1)原料组成:al2tio5粉体和ti3alc2粉体的质量比为(8~9.5):(2~0.5)作为为原料,加入添加剂,该添加剂是粉体重量0.5~2wt%的二氧化硅,0.1~0.5wt%的聚乙二醇;(2)原料混合:将步骤(1)中原料按各自的百分含量比例,混合均匀;(3)成型、烧结与加工:将步骤(2)中混合均匀的原料模压成型,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在500~900℃真空条件下保温9~10h,然后在氩气气氛下1000~1300℃热等静压100~200mpa保温15-20h得到的烧结坯体,再经车床机加工后获得陶瓷垫块。
7.进一步的,原料中添加al2tio5和ti3alc2粉体重量2~10wt%的调质剂,所述的调质剂质量比为1:2:1的氧化铝、氧化镁、三氧化二铁复配物。
8.进一步的,所述加入添加剂为分步添加,首先向al2tio5粉体中加入一半分量的二氧化硅和一半分量的聚乙二醇,混合均匀后,再依次加入ti3alc2粉体和剩余的二氧化硅和聚乙二醇,并混匀。
9.进一步的,所述的al2tio5粉体纯度≥90wt%,粒径小于3mm。
10.进一步的,所述的ti3alc2粉体纯度≥90wt%,粒径小于200μm。
11.进一步的,所述的氧化铝、氧化镁、三氧化二铁纯度≥92wt%,粒径小于50μm。
12.进一步的,所述的模压成型的压力为50~300mpa,保压5-30min。
13.进一步的,所述的氩气纯度≥99%。
14.本发明与现有技术相比具有以下优点:本发明(1)与传统氧化物-碳化物复合材料不同,由于al2tio5和ti3alc2中共同具备ti元素和al元素,al2tio
5-ti3alc2材料的界面在高温高压下能够形成连续化学结合;利用al2tio5近零热膨胀系数、低导热系数、高熔点、抗热震、优异抗热冲击性能和ti3alc2高强度、模量、抗酸碱腐蚀性、可机加工性、高屈服强度、高熔点、高热稳定性、优良抗氧化性能、抗腐蚀性能、自润滑性能,将两者有机结合。(2)优化了添加剂的种类,在基础配方中筛选出二氧化硅、聚乙二醇作为基本的烧结添加剂,可以改善材料性能,在优选的配方中进一步添加氧化铝、氧化镁、三氧化二铁复配物,并得出其质量比为1:2:1时,性能最佳。通过调质剂的引入,能够提高复合材料结合性和高温稳定性;(3)本发明al2tio
5-ti3alc2复合材料陶瓷垫块是在热膨胀系数低的al2tio5材料中构建高强度、高韧性的ti3alc2结合相网络,提升材料的致密度、高温强度、热振稳定性、耐磨性、高温稳定性、数控车床机加工性能,复合材料陶瓷垫块低损伤、少缺陷、高成品率。4)该材料的作为冶金行业的垫块延长了陶瓷垫块服役寿命,可降低钢坯的“黑印”、扭曲、变形等缺陷,明显提高钢坯的成材率和产品的质量。
具体实施方式
15.为避免重复,没有特别提及的情况下,本具体实施方式中:al2tio5粉体纯度≥90wt%,粒径小于3mm;ti3alc2粉体纯度≥90wt%,粒径小于200μm;氩气纯度≥99%。实施例中不再赘述。
16.为避免重复,没有特别提及的情况下,采用下列方法测试复合材料陶瓷垫块的性能参数:按照gb/t 25995-2010 精细陶瓷密度和显气孔率试验方法,测试气孔率。
17.按照gb/ t 4741-1999 陶瓷材料抗弯曲强度试验方法,测试抗折强度。
18.参照gb/t16535-1996工程陶瓷线热膨胀系数试验方法,测试热膨胀系数。测试温度范围按下述实验设定。
19.参照gb/t 16536-1996 工程陶瓷抗热震性试验方法,测试热震断裂次数,测试温度范围按照下述实验设定,水冷为15摄氏度。
20.实施例1称取80wt%的al2tio5粉体和20wt%的ti3alc2粉体为原料混合均匀,首先在粉体中加入粉体质量0.5wt%的二氧化硅,0.1wt%的聚乙二醇,混合均匀后,模压成型,模压成型的压力为50mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在500℃真空条件下保温9h,然后在氩气气氛下1000℃热等静压100mpa保温15h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
21.气孔率为5.03%,抗折强度为80.4mpa,热膨胀系数α为1.22
×
10-6/℃(室温~1000℃),热震断裂次数为200次(1100℃~室温水冷)。
22.实施例2称取95wt%的al2tio5粉体和5wt%的ti3alc2粉体为原料,首先在加入al2tio5粉体以及al2tio5和ti3alc2粉体总质量的1wt%的二氧化硅,0.25wt%的聚乙二醇,混合均匀后再依次加入ti3alc2粉体和剩余1wt%的二氧化硅,0.25wt%的聚乙二醇,充分混合,模压成型,模压成型的压力为300mpa,保压30min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在900℃真空条件下保温10h,然后在氩气气氛下1300℃热等静压200mpa保温20h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
23.气孔率为4.03%,抗折强度为75.4mpa,热膨胀系数α为1.25
×
10-6/℃(室温~1000℃),热震断裂次数为176次(1100℃~室温水冷)。
24.相对实施例1增加al2tio5粉体的比例,降低ti3alc2粉体,可以改善陶瓷的加工性能,但是抗折性能略有下降,因此本技术需要合理调控两者比例,使得陶瓷具有较好的加工性能,还具有较好的抗高温抗冲击性能。
25.实施例3称取82wt%的al2tio5粉体和18wt%的ti3alc2粉体为原料,1.5wt%的二氧化硅,0.5wt%的聚乙二醇,充分混合,模压成型,模压成型的压力为150mpa,保压15min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在780℃真空条件下保温9.6h,然后在氩气气氛下1280℃热等静压180mpa保温18h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
26.气孔率为4.83%,抗折强度为79.6mpa,热膨胀系数α为1.23
×
10-6/℃(室温~1000℃),热震断裂次数为188次(1100℃~室温水冷)。
27.实施例4称取95wt%的al2tio5粉体和5wt%的ti3alc2粉体为原料,2wt%的二氧化硅,0.4wt%的聚乙二醇,充分混合,模压成型,模压成型的压力为260mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在850℃真空条件下保温9.5h,然后在氩气气氛下1050℃热等静压100mpa保温18h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
28.气孔率为5.95%,抗折强度为65.4mpa,热膨胀系数α为1.06
×
10-6/℃(室温~1000℃),热震断裂次数为155次(1100℃~室温水冷)。
29.对比实施例2,采用分步混料的方法,粉体原料混合的均匀性能能提升陶瓷材料的各项指标性能。
30.实施例5称取94wt%的al2tio5粉体和6wt%的ti3alc2粉体为原料,1wt%的二氧化硅,0.4wt%的聚乙二醇,混合均匀后再依次加入2wt%的1:2:1的氧化铝、氧化镁、三氧化二铁复配物,充分混合,模压成型,模压成型的压力为260mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在850℃真空条件下保温9.5h,然后在氩气气氛下1050℃热等静压100mpa保温18h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
31.机械加工时,材料断面的紧密度较好。气孔率为1.01%,抗折强度为100.4mpa,热膨胀系数α为1.26
×
10-6/℃(室温~1000℃),热震断裂次数为310次(1100℃~室温水冷)。
32.实施例6称取94wt%的al2tio5粉体和6wt%的ti3alc2粉体为原料,1wt%的二氧化硅,0.4wt%的聚乙二醇,混合均匀后再依次加入4wt%的1:2:1的氧化铝、氧化镁、三氧化二铁复配物,充分混合,模压成型,模压成型的压力为260mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在850℃真空条件下保温9.5h,然后在氩气气氛下1050℃热等静压100mpa保温18h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
33.机械加工时,材料断面的紧密度较好。气孔率为0.85%,抗折强度为110.4mpa,热膨胀系数α为1.27
×
10-6/℃(室温~1000℃),热震断裂次数为400次(1100℃~室温水冷)。
34.相对于实施例5,致密性进一步提升,抗热震性能也进一步提升。
35.实施例7称取94wt%的al2tio5粉体和6wt%的ti3alc2粉体为原料,1wt%的二氧化硅,0.4wt%的聚乙二醇,混合均匀后再依次加入6wt%的1:2:1的氧化铝、氧化镁、三氧化二铁复配物,充分混合,模压成型,模压成型的压力为260mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在850℃真空条件下保温9.5h,然后在氩气气氛下1050℃热等静压100mpa保温18h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
36.气孔率为0.70%,抗折强度为115.4mpa,热膨胀系数α为1.26
×
10-6/℃(室温~1000℃),热震断裂次数为420次(1100℃~室温水冷)。
37.相对于实施例6,致密性进一步提升,抗热震性能也进一步提升,各项性能均有所
提升。
38.实施例8称取94wt%的al2tio5粉体和6wt%的ti3alc2粉体为原料,1wt%的二氧化硅,0.4wt%的聚乙二醇,混合均匀后再依次加入10wt%的1:2:1的氧化铝、氧化镁、三氧化二铁复配物,充分混合,模压成型,模压成型的压力为260mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在850℃真空条件下保温9.5h,然后在氩气气氛下1050℃热等静压100mpa保温18h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
39.气孔率为1.20%,抗折强度为100.4mpa,热膨胀系数α为1.24
×
10-6/℃(室温~1000℃),热震断裂次数为320次(1100℃~室温水冷)。
40.相对于实施例6、7,各项性能开始所提下降,但也优于不添加复配物的性能。
41.对比例1称取80wt%的al2tio5粉体和20wt%的ti3alc2粉体为原料混合均匀,首先在粉体中加入粉体质量0.5wt%的二氧化硅,混合均匀后,模压成型,模压成型的压力为50mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在500℃真空条件下保温9h,然后在氩气气氛下1000℃热等静压100mpa保温15h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
42.气孔率为10.03%,抗折强度为75.4mpa,热膨胀系数α为1.01
×
10-6/℃(室温~1000℃),热震断裂次数为100次(1100℃~室温水冷)。
43.对比实施例1和对比例1,可以看出实施例1添加极其少量的聚乙二醇,可以显著降低气孔率,并提高强度,增加热震断裂次数。
44.对比例2称取80wt%的al2tio5粉体和20wt%的ti3alc2粉体为原料混合均匀,首先在粉体中加入粉体质量0.5wt%的二氧化硅,1wt%的聚乙二醇,混合均匀后,模压成型,模压成型的压力为50mpa,保压5min,干燥后得到坯体;将坯体材料置入热等静压烧结炉,在500℃真空条件下保温9h,然后在氩气气氛下1000℃热等静压100mpa保温15h得到的烧结坯体,再经数控车床机加工后获得al2tio
5-ti3alc2复合材料陶瓷垫块。
45.气孔率为15.03%,抗折强度为43.4mpa,热膨胀系数α为1.00
×
10-6/℃(室温~1000℃),热震断裂次数为30次(1100℃~室温水冷)。
46.对比实施例1和对比例2,可以得出添加的聚乙二醇量增大后,聚乙二醇相当于制孔剂,使得烧结物中的气孔率上升,各项性能都显著下降。因此控制聚乙二醇的合理添加量尤为重要。
47.对比例3与实施例7不同的是,复配物的配方调整为如下几种:(1)1:1:1的氧化铝、氧化镁、三氧化二铁复配物;(2)1:1的氧化铝、三氧化二铁复配物;(3)1:2的氧化铝、氧化镁;
(4)2:1的氧化镁、三氧化二铁;(5)1:3:1的氧化铝、氧化镁、三氧化二铁复配物。
48.单独添加氧化铝、氧化镁、三氧化二铁中的一种。其它按照实施例7进行试验。
49.复配(1)气孔率为2.0%,抗折强度80.3mpa,热膨胀系数α为1.25
×
10-6/℃(室温~1000℃),热震断裂次数为250次(1100℃~室温水冷)。
50.复配(2)气孔率为1.95%,抗折强度为76.4mpa,热膨胀系数α为1.24
×
10-6/℃(室温~1000℃),热震断裂次数为265次(1100℃~室温水冷)。
51.复配(3)气孔率为3.2%,抗折强度为82.1mpa,热膨胀系数α为1.25
×
10-6/℃(室温~1000℃),热震断裂次数为276次(1100℃~室温水冷)。
52.复配(4)气孔率为1.10%,抗折强度为99.4mpa,热膨胀系数α为1.29
×
10-6/℃(室温~1000℃),热震断裂次数为310次(1100℃~室温水冷)。
53.单独添加氧化铝的气孔率为5.20%,抗折强度为70.4mpa,热膨胀系数α为1.24
×
10-6/℃(室温~1000℃),热震断裂次数为200次(1100℃~室温水冷)。
54.单独添加氧化镁的气孔率为4.2%,抗折强度为72.5mpa,热膨胀系数α为1.25
×
10-6/℃(室温~1000℃),热震断裂次数为210次(1100℃~室温水冷)。
55.单独添加三氧化二铁的气孔率为5.1%,抗折强度为66.4mpa,热膨胀系数α为1.06
×
10-6/℃(室温~1000℃),热震断裂次数为161次(1100℃~室温水冷)。
56.通过本对比例,可以得出合理范围的氧化镁对提升物理性能贡献较大。1:2:1的氧化铝、氧化镁、三氧化二铁复配物,更适合本技术方案中的al2tio5粉体和ti3alc2粉体的烧结,使得结合更为紧密,性能更为优异。
57.上述实施方式是对本发明技术方案的阐释,发明的保护范围以权利要求书记载为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1