一种高红外透过率MgAlON透明陶瓷的固相反应快速无压烧结方法

文档序号:31859514发布日期:2022-10-19 04:17阅读:441来源:国知局
一种高红外透过率MgAlON透明陶瓷的固相反应快速无压烧结方法
一种高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法
技术领域
1.本发明涉及一种高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法,属于透明陶瓷制备技术领域。


背景技术:

2.mgalon是mg
2+
固溶到alon晶格中形成的高温稳定物质,是mgo-al2o
3-aln体系中稳定的固溶体,与alon具有相同的晶体结构,但其热稳定性更好。mgalon透明陶瓷在可见至近红外波段具有很好的透光性,而且其红外截止波长比alon透明陶瓷更宽。另外,mgalon透明陶瓷还拥有良好的综合力学性能,因此,可广泛用作航空航天、透明装甲以及深海探测等诸多领域中先进装备的透明窗口材料,具有广阔的应用前景。
3.由于alon粉体在烧结制备透明陶瓷的升温过程中,alon的低温不稳定性使其与al2o3+aln之间存在往复式相变现象(较低温度条件下alon相变为al2o3+aln,较高温度条件下al2o3+aln又相变回alon),而且这种相变与alon粉体粒度和烧结助剂及其掺量等因素密切相关。因此,在对粉体粒度和烧结助剂均敏感的前提下,alon透明陶瓷的致密化烧结十分困难,一般需要在高温下保温6h以上来排出气孔,以获得高透光性,若想在较短的保温时间内通过无压烧结制得高透光性的alon透明陶瓷,则需要对alon粉体粒度进行有效调控,并将粉体粒度与烧结助剂进行很好的匹配才能达到良好的致密化烧结效果。
4.与alon相比,mgalon的相形成温度较低,可以在《1550℃温度条件下获得mgalon相。但是,现有研究表明,无论是基于mgalon粉体的致密化烧结,还是通过固相反应直接制备mgalon透明陶瓷,一般都需要在无压烧结的基础上对陶瓷再进行热等静压烧结,才能有效地排出气孔,获得高致密度和高透光性。与无压烧结设备相比,热等静压设备技术难度大,不仅设备昂贵而且使用成本非常高,特别是工作腔尺寸较大的设备成本更高,这些因素使mgalon透明陶瓷实现工业化生产和普遍应用非常困难。因此,摆脱对热等静压设备的依赖对于mgalon透明陶瓷走向实际应用十分必要。
5.目前,mgalon透明陶瓷制备主要有两种途径:一种是先合成mgalon粉体,再进行致密化烧结;另一种是以mgo、al2o3和aln为原料,通过固相反应直接制备mgalon透明陶瓷。这些mgalon透明陶瓷的无压烧结制备均存在烧结温度高、保温时间长的问题,mgalon粉体致密化烧结一般需要在1870℃以上保温20~24h(王跃忠等,mgalon透明陶瓷无压烧结制备及微观结构研究,稀有金属材料与工程,44(增刊1):101~104;刘鑫,武汉理工大学,博士学位论文,稀土离子eu
2+
/ce
3+
掺杂mgalon透明陶瓷的制备、结构及性能研究,2017年),而固相反应无压烧结制备mgalon透明陶瓷需要在1950~2000℃保温4~6h(james p.mathers,et al.transparent aluminum oxynitride-based ceramic article[p].us 5231062,1993-07-27),在1975℃保温5h所获得陶瓷的透过率为72%。
[0006]
因此,基于无压烧结设备成本低及适应大尺寸构件制备的特点,针对mgalon透明陶瓷制备,有必要基于原料粉体,结合烧结工艺调控,探索出一条快速无压烧结新方法,以
适应大尺寸构件及工业生产的实际需要。


技术实现要素:

[0007]
本发明的目的在于提供一种以mgal2o4和alon粉体为原料,在氮气环境中两步升温,通过固相反应快速无压烧结制备mgalon透明陶瓷的方法。该方法以纳米mgal2o4粉体作为mg源,与alon粉体配合,添加0.5wt.%y2o3作为烧结助剂,在氮气环境中,首先在1680~1720℃保温30~60min,然后继续升温到1860~1900℃保温120~180min,通过固相反应无压烧结制备mgalon透明陶瓷。该方法工艺简单、操作方便、对设备要求不高、成本低、安全性高,且效率高、节能效果好,易实现产业化。使用该方法,在总计2.5~4h保温时间内获得了具有高致密度的高红外透过率mgalon透明陶瓷,陶瓷的相对密度为99.35%,红外透过率高达80.4%。
[0008]
一种高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法,其特征在于:按mgal2o4粉体12~15wt.%和alon粉体85~88wt.%配料,并添加烧结助剂,将所有原料粉体球磨混合后,干压成型制备坯体;将坯体在氮气环境下,采用两步升温工艺通过无压烧结制备mgalon透明陶瓷,两步升温工艺为:先升温至1680~1720℃保温30~60min,再继续升温到1860~1900℃保温120~180min,得mgalon透明陶瓷。
[0009]
上述技术方案中,mgal2o4粉体和alon粉体质量分数之和为100%。
[0010]
优选地,mgal2o4含量13.46wt.%、alon含量86.54wt.%。
[0011]
上述技术方案中,优选所述烧结助剂为y2o3,其用量为mgal2o4和alon总重量的0.5%。
[0012]
本发明所述高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法中,所述mgal2o4为纳米粉体,一次粒径~100nm。
[0013]
本发明所述高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法中,alon粉体一次粒径为1~2μm。
[0014]
本发明所述高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法中,球磨后混合粉体的中位粒度为1~1.5μm,粒度分布范围为0.2~5μm,比表面积为7~9m2/g。
[0015]
优选地,将mgal2o4、alon和烧结助剂混合粉体以150~200rpm球磨18~24h后,烘干料浆、过50~80目筛,压制坯体。
[0016]
优选地,将球磨混合后的原料粉体在30~60mpa下单向加压成型,再经100~150mpa冷等静压成型获得坯体。
[0017]
优选地,将坯体置入石墨坩埚中,在高温气氛烧结炉中,氮气气氛下,采用两步升温工艺制备mgalon透明陶瓷,其中,升温速率为15~40℃/min,第二步保温结束后随炉冷却。
[0018]
最优选的,两步升温工艺为:先以20℃/min升温到1700℃,在1700℃保温60min后,继续以20℃/min升温至1880℃,保温150min。
[0019]
优选地,所述方法还包括将烧结所得mgalon透明陶瓷进行表面磨抛的步骤。
[0020]
本发明的另一目的是提供由上述方法制得的高红外透过率mgalon透明陶瓷。
[0021]
本发明所述mgalon透明陶瓷的红外透过率≥80%。进一步地,mgalon透明陶瓷的红外透过率为80.4%。
[0022]
本发明的有益效果为:本发明利用纳米mgal2o4粉体作为mg源,与alon粉体混合作为原料,添加0.5wt.%y2o3烧结助剂,采用两步升温工艺在氮气气氛条件下通过固相反应快速无压烧结制备mgalon透明陶瓷。原料mgal2o4和alon同属立方尖晶石结构,易在高温下固溶形成mgalon,且alon在升温过程中相变产生的al2o3和aln也不断地与mgal2o4固溶形成mgalon。通过第一步保温,利用al2o3和aln由alon中分解出来,且不断固溶进mgalon晶格,使较大的alon晶粒变小,同时颗粒较小的mgalon在致密化烧结过程中还起到了桥梁作用,为后期烧结过程物质传输创造了条件。而且,在第一步保温过程中,陶瓷密度仍不断增大,使在进入后续致密化烧结之前,陶瓷的晶粒尺寸小且排列紧密,为烧结后期提供了良好的颗粒匹配条件及烧结动力。在总保温时间2.5~4h条件下,通过无压烧结所制备的mgalon陶瓷相对密度为99.35%,红外透过率达80.4%。表明以纳米mgal2o4粉体作为mg源,与alon粉体配合使用,通过两步升温工艺控制,能够直接通过固相反应快速无压烧结获得高红外透过率的mgalon透明陶瓷。此外,本发明工艺简单易行,对设备要求不高,而且两步升温有效地缩短了mgalon透明陶瓷无压烧结制备的总保温时间,该技术安全性高、成本低、操作方便、效率高、节能效果好,易实现产业化。
附图说明
[0023]
图1为实施例1原料mgal2o4粉体、alon粉体及原料混合粉体的sem图和xrd图谱。
[0024]
图2为实施例1和对比例1中,1700℃保温前后陶瓷的物相组成。
[0025]
图3为实施例1和对比例1中,1700℃保温前后陶瓷的断口形貌。
[0026]
图4为实施例1和对比例1中,1880℃保温150min后陶瓷的物相组成。
[0027]
图5为实施例1和对比例1中,1880℃保温150min后陶瓷的微观形貌。
[0028]
图6为实施例1和对比例1中,所制备mgalon陶瓷的透光性曲线及样品照片。
具体实施方式
[0029]
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
[0030]
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
[0031]
具体实施方式之一:
[0032]
一种高红外透过率mgalon透明陶瓷的固相反应快速无压烧结方法,包括下述工艺步骤:
[0033]
(1)按mgal2o4粉体12~15wt.%、alon粉体85~88wt.%称取原料粉体,添加0.5wt.%y2o3作为烧结助剂,其中,所述mgal2o4为纳米粉体,一次粒径~100nm;alon粉体一次粒径为1~2μm。
[0034]
(2)以无水乙醇为介质,将称得的mgal2o4、alon和y2o3粉体在行星式球磨机上以150~200rpm球磨18~24h;
[0035]
(3)将球磨混合后的浆料烘干,过50~80目筛;
[0036]
(4)将过筛后的混合粉体在30~60mpa下单向加压预成型,再在100~150mpa条件下冷等静压成型,获得坯体。
[0037]
(5)把坯体装入石墨坩埚,置于高温气氛烧结炉中,在氮气气氛中,在15~40℃/min升温至1680~1720℃保温30~60min,然后继续升温到1860~1900℃保温120~180min,保温结束后随炉冷却;
[0038]
(6)所述获得的mgalon陶瓷研磨、抛光,制得mgalon透明陶瓷。
[0039]
实施例1
[0040]
按纯相纳米mgal2o4粉体(一次粒径~100nm)13.46wt.%(2.692g)和alon粉体(一次粒径为1~2μm)86.54wt.%(17.308g)称取原料,添加0.5wt.%y2o3(0.1g)作为烧结助剂,称取原料共计20.1g,加入无水乙醇100ml,配制mgal2o4和alon的混合浆料,在行星式球磨机上以170rpm球磨24h,所得混合浆料烘干、过60目筛。图1是mgal2o4、alon以及原料混合粉体的微观形貌及物相组成。可以看出:mgal2o4粉体颗粒细小,一次粒径为101nm;alon粉体球磨前呈骨架结构,由1~2μm颗粒组成;原料粉体球磨后小颗粒与大颗粒同时存在,均匀混合,中位粒度为1.21μm,粒度分布范围为0.24~4.58μm;所采用的原料粉体为纯相mgal2o4和纯相alon,原料混合球磨后通过xrd检测出了mgal2o4和alon的衍射峰。
[0041]
将过筛后的混合粉体在50mpa下单向加压预成型,再在120mpa条件下冷等静压成型,获得坯体。然后,把坯体装入石墨坩埚,置于高温气氛烧结炉,在氮气气氛中,以20℃/min升温至1700℃保温60min,图2和图3分别是所得样品的物相组成和断口形貌图。此时,陶瓷中除主相mgalon外,还含有少量α-al2o3,样品中大颗粒与小颗粒同时存在,均匀分布,1700℃保温后样品的相对密度为84.95%。
[0042]
当1700℃保温60min后,继续以20℃/min升温至1880℃保温150min,获得了纯相的mgalon陶瓷(xrd结果见图4),其致密度较高,达99.35%,断口中未见明显气孔(断口形貌见图5),透过率曲线见图6,最大红外透过率为80.4%。同时,该陶瓷的维氏硬度为15.76gpa。
[0043]
对比例1
[0044]
对比例1与实施例1的区别是,采用的是一步升温工艺,即直接升温至1880℃保温150min。所得陶瓷为纯相mgalon(见图4),但其断口的sem图中可观察到明显气孔(见图5),相对密度为99.09%,透过率曲线见图6,最大红外透过率为66.4%,维氏硬度为15.56gpa。此外,图2和图3还分别给出了该样品升温至1700℃不保温条件下的物相组成和微观形貌,可见1700℃不保温时,样品中α-al2o3含量明显较实施例1中1700℃保温60min时少,且晶粒尺寸普遍较大,其致密度比实施例1第一步保温结束时低,仅为78.92%,说明在第一步保温阶段,陶瓷的致密化进程仍在不断进行。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1