一种氢冶金用微孔刚玉砖及其制备方法

文档序号:32418311发布日期:2022-12-02 22:34阅读:41来源:国知局

1.本发明涉及耐火材料技术领域,尤其涉及一种氢冶金用微孔刚玉砖及其制备方法。


背景技术:

2.氢冶金是采用氢气部分取代或完全取代碳作为铁矿石的还原剂,在低于铁熔点的温度范围内得到固态含铁料的技术。高纯h2在800℃下保温6小时,能够将铁矿石完全还原成fe。氢冶金作为新兴的冶金工艺,对冶炼窑炉炉衬耐火材料提出了新的要求。炉衬耐火材料首先在高温h
2-h2o耦合环境下需要具备优异的化学稳定性;其次,赤铁矿被还原成的海绵铁具有一定硬度,因此对炉衬耐火材料高温强度提出更高的要求;最后,炉衬服役过程中面临着温度变化和热应力,要求氢冶金用耐火材料具有优异的热震稳定性。
3.刚玉是目前用途最为广泛的耐火原料之一,具有熔点高、硬度大、强度高、化学性质稳定等一系列的优点。以刚玉为主要原料制备的刚玉砖在h
2-h2o条件下能够保持良好的稳定性,具备在氢冶金领域应用的前景。然而,刚玉砖的热震稳定性有待提高;另外,为提高抗h
2-h2o腐蚀性能,要求刚玉砖纯度高,这会导致烧结较为困难,高温结合强度不足。
4.一种(al2oc)
x
(aln)
1-x
固溶体结合致密刚玉质耐火材料及其制备方法(cn 201910642700.3)以刚玉为主要原料,酚醛树脂为结合剂,添加金属al粉,经过高温烧结生成高热导率的(al2oc)
x
(aln)
1-x
固溶体结合相,提高热震稳定性与高温结合强度。徐恩霞等人(徐恩霞,张恒,钟香崇.耐火材料,2008,42(1):18-21.)制备了β-sialon结合刚玉砖,原位生成的β-sialon填充刚玉间隙,与刚玉颗粒结合紧密,增大了材料力学性能。但(al2oc)
x
(aln)
1-x
、β-sialon等结合相会面临高温h2o蒸气氧化,限制了其在氢冶金领域的应用。祝慧等人(祝慧,龚伟,李享成,等.耐火材料,2019,53(4):308-312.)在刚玉质浇注料中添加纳米al2o3促进ca2和ca6的生成,提高刚玉质浇注料热震稳定性,然而提升效果有限。进一步提高刚玉砖的热震稳定性和高温结合强度是其在氢冶金用炉衬耐火材料中成功使用的前提与关键。


技术实现要素:

5.本发明的目的在于,针对现有技术的上述不足,提出一种氢冶金用微孔刚玉砖及其制备方法,用该方法制备的氢冶金用微孔刚玉砖热震稳定性好、高温强度大、抗h
2-h2o气体腐蚀性能强。
6.本发明的一种氢冶金用微孔刚玉砖的制备方法,以89~96wt%的微孔刚玉、1~3wt%的α-al2o3微粉、0.5~4wt%的碳酸钙和1~7wt%的氧化钇为原料,混合,再外加所述原料3~5wt%的亚硫酸纸浆废液,混炼,压制成型,烘干煅烧制得氢冶金用微孔刚玉砖;
7.进一步的,所述煅烧在高温炉中,以5~10℃/min的速率升温至1500~1600℃,保温5~10h。
8.进一步的,所述微孔刚玉的al2o3含量≥99.5wt%,体积密度≥3.3g/cm3、显气孔率
≤5%、闭口气孔率≥10%、平均孔径≤1μm;所述微孔刚玉的颗粒级配是:
9.粒径小于5mm且大于等于3mm占微孔刚玉10~15wt%,
10.粒径小于3mm且大于等于1mm占微孔刚玉20~25wt%,
11.粒径小于1mm且大于等于0.088mm占微孔刚玉30~45wt%,
12.粒径小于0.088mm占微孔刚玉20~32wt%。
13.进一步的,所述α-al2o3微粉的al2o3含量≥99.5wt%,所述α-al2o3的粒径≤2μm。
14.进一步的,所述碳酸钙的caco3≥99wt%,所述碳酸钙的粒径≤2μm。
15.进一步的,所述氧化钇的y2o3含量≥99wt%,所述氧化钇的粒径≤5μm。
16.一种采用上述的制备方法制备的氢冶金用微孔刚玉砖。
17.由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
18.微孔刚玉含有大量闭口气孔,能够吸收热应力,提高热震稳定性能,以微孔刚玉为主要原料制备的微孔刚玉砖具备优异的抗热震性。在微孔刚玉砖中添加caco3和y2o3,高温下能与微孔刚玉骨料反应生成cayal3o7结合相,将微孔刚玉骨料粘结起来,且微孔刚玉骨料表面粗糙度较高,与cayal3o7结合相形成牢固的机械结合,大幅提高了材料高温结合强度。微孔刚玉骨料与cayal3o7结合相在高温h
2-h2o环境下均具有良好的化学稳定性,有利于氢冶金用炉衬耐火材料长寿化。
19.本发明制备的氢冶金用微孔刚玉砖经过检测:热震(首先加热到1100℃保温30min,然后放入流动水中冷却)循环次数26~37次;1000℃下高温抗折强度为5~9mpa;常温耐压强度为110~160mpa;经过900℃下的h
2-h2o混合气体腐蚀10h后,耐压强度为88~135mpa。
20.因此,本发明制备的氢冶金用微孔刚玉砖具有热震稳定性好、高温强度大、抗h
2-h2o气体腐蚀性能强的特点,适用于采用h2或h2+co混合气为还原剂的氢冶金天然气基竖炉制铁。
具体实施方式
21.以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
22.为避免重复,先将本具体实施方式所采用的物料统一描述如下,实施例中不再赘述:
23.所述微孔刚玉的al2o3含量≥99.5wt%,体积密度≥3.3g/cm3、显气孔率≤5%、闭口气孔率≥10%、平均孔径≤1μm;所述微孔刚玉的颗粒级配是:
24.粒径小于5mm且大于等于3mm占微孔刚玉10~15wt%,
25.粒径小于3mm且大于等于1mm占微孔刚玉20~25wt%,
26.粒径小于1mm且大于等于0.088mm占微孔刚玉30~45wt%,
27.粒径小于0.088mm占微孔刚玉20~32wt%。
28.所述α-al2o3微粉的al2o3含量≥99.5wt%,所述α-al2o3微粉的粒径≤2μm。
29.所述碳酸钙的caco3≥99wt%,所述碳酸钙的粒径≤2μm。
30.所述氧化钇的y2o3含量≥99wt%,所述氧化钇的粒径≤5μm。
31.实施例1
32.一种氢冶金用微孔刚玉砖及其制备方法。本实施例所述制备方法是:
33.以89~92wt%的微孔刚玉、1~2wt%的α-al2o3微粉、2~4wt%的碳酸钙和4.5~7wt%的氧化钇为原料,混合,再外加所述原料3~5wt%的亚硫酸纸浆废液,混炼,压制成型,烘干;然后置于高温炉中,以5~10℃/min的速率升温至1500~1600℃,保温5~10h,制得氢冶金用微孔刚玉砖。
34.本实施例制备的氢冶金用微孔刚玉砖经过检测:热震(首先加热到1100℃保温30min,然后放入流动水中冷却)循环次数26~30次;1000℃下高温抗折强度为8~9mpa;常温耐压强度为133~150mpa;经过900℃下的h
2-h2o混合气体腐蚀10h后,耐压强度为115~130mpa。
35.实施例2
36.一种氢冶金用微孔刚玉砖及其制备方法。本实施例所述制备方法是:
37.以90~93wt%的微孔刚玉、1~2wt%的α-al2o3微粉、1.5~3wt%的碳酸钙和3~6wt%的氧化钇为原料,混合,再外加所述原料3~5wt%的亚硫酸纸浆废液,混炼,压制成型,烘干;然后置于高温炉中,以5~10℃/min的速率升温至1500~1600℃,保温5~10h,制得氢冶金用微孔刚玉砖。
38.本实施例制备的氢冶金用微孔刚玉砖经过检测:热震(首先加热到1100℃保温30min,然后放入流动水中冷却)循环次数28~31次;1000℃下高温抗折强度为6~8mpa;常温耐压强度为145~160mpa;经过900℃下的h
2-h2o混合气体腐蚀10h后,耐压强度为122~135mpa。
39.实施例3
40.一种氢冶金用微孔刚玉砖及其制备方法。本实施例所述制备方法是:
41.以91~95wt%的微孔刚玉、1.5~3wt%的α-al2o3微粉、1~2wt%的碳酸钙和2~5.5wt%的氧化钇为原料,混合,再外加所述原料3~5wt%的亚硫酸纸浆废液,混炼,压制成型,烘干;然后置于高温炉中,以5~10℃/min的速率升温至1500~1600℃,保温5~10h,制得氢冶金用微孔刚玉砖。
42.本实施例制备的氢冶金用微孔刚玉砖经过检测:热震(首先加热到1100℃保温30min,然后放入流动水中冷却)循环次数30~35次;1000℃下高温抗折强度为6~8.5mpa;常温耐压强度为118~135mpa;经过900℃下的h
2-h2o混合气体腐蚀10h后,耐压强度为100~120mpa。
43.实施例4
44.一种氢冶金用微孔刚玉砖及其制备方法。本实施例所述制备方法是:
45.以94~96wt%的微孔刚玉、1.5~3wt%的α-al2o3微粉、0.5~1.5wt%的碳酸钙和1~3wt%的氧化钇为原料,混合,再外加所述原料3~5wt%的亚硫酸纸浆废液,混炼,压制成型,烘干;然后置于高温炉中,以5~10℃/min的速率升温至1500~1600℃,保温5~10h,制得氢冶金用微孔刚玉砖。
46.本实施例制备的氢冶金用微孔刚玉砖经过检测:热震(首先加热到1100℃保温30min,然后放入流动水中冷却)循环次数32~37次;1000℃下高温抗折强度为5~7.5mpa;常温耐压强度为110~120mpa;经过900℃下的h
2-h2o混合气体腐蚀10h后,耐压强度为88~104mpa。
47.以上未涉及之处,适用于现有技术。
48.虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1