环己烯基烷基或烯基酮的异构化方法

文档序号:3530228阅读:381来源:国知局
专利名称:环己烯基烷基或烯基酮的异构化方法
技术领域
本发明涉及有机合成领域。更确切地说,它提供了一种将2-烷基-环己-3-烯基烷基或烯基酮异构化为含有相应的2-烷基-环己-2-烯基酮和相应的2-亚烷基-环己酮的混合物的方法,该方法使用通过合适的钌有机金属前体与酸反应得到的络合物作为催化剂。
背景技术
如下所示的式(II)或(II’)的化合物可以用做加香成分或作为构造骨架结构更复杂化合物的起始原料。
现有技术中所公开的制备上述化合物的方法一般时间很长并且价格昂贵。而且,每种所述的方法只能得到上述化合物中的一种或另一种。因此,为了得到上述的化合物本领域的技术人员必须实施两个独立的过程,明显地浪费了时间。
因此迫切需要通过简单有效的异构化方法得到上述化合物,其起始原料是容易得到的材料并且可以同时得到化合物(II)和(II’)。
据我们所知,在现有技术中没有有关可以直接同时得到式(II)和(II’)的化合物的异构化方法的报道。

发明内容
为了解决上述的问题,本发明提供了一种方法将式(I)所示的底物异构化为含有至少一种式(II)所示的化合物和至少一种式
(II’)所示的化合物的混合物, 其中每个R1同时或独立地代表氢原子或甲基基团并且R2代表氢原子、直链或支链的C1-4烷基或C2-51-烯基基团; 其中R1和R2具有与上述所示相同的含义;所述的方法在非配位或弱配位的介质中、惰性环境中和催化剂存在的条件下进行,上述催化剂是在非配位或弱配位的介质中和惰性环境中由下面的物质反应得到的a)式[钌(二烯)(烯丙基)2]、[钌(二烯基)2]、[钌(四烯)(烯)]或[钌(二烯)(三烯)]的钌前体;和b)式HX的质子酸,其中X是弱配位或非配位的阴离子;或式B(R3)3的路易斯酸,其中R3代表氟化物或被1到5个基团如卤原子或甲基或CF3基团任意取代的苯基基团,或者式FeX3、FeX2、AgX、AlY3、FeY3、FeY2、SnY2、SnY4、AgY、AgY2、SbY5、AsY5或PY5的路易斯酸,X是如上面所定义的基团并且Y是氟或氯原子;酸/钌的摩尔比为0.3到3.1。
由本发明的异构化方法得到的混合物中含有另一种化合物,此化合物被提及是有用的,其是下式(III)所示的烯酮
其中R1和R2具有式(I)中所示的相同含义。所述的化合物(III)是在异构化结束时得到混合物中的可能的组分,事实上,申请人已经发现所述的化合物(III)的形成取决于具体的试验条件,特别是取决于Ru/酸的比率,反应的温度和持续时间,或者取决于所用的催化剂及其浓度。通常,化合物(III)在最终的混合物中所占的重量小于2%。根据本发明的优选实施例,最终的混合物中不含有所述的式(III)的化合物。
根据本发明的优选实施例,底物是如下式(IV)所示的化合物 其中R1和R2具有式(I)中所示的相同的含义,优选R1代表氢原子并且R2代表氢原子或甲基或CH=CHCH3基团;并且得到的混合物中含有相应的式(V)和(V’)的化合物 其中R1和R2具有式(IV)中所示的相同的含义。
在所述的实施例中,上述混合物的可能的组分如下式(VI)所示
其中R1和R2具有式(VI)中所示的相同的含义。
此外,除了具体实施例以外,很重要也应该被提及的是式(I)的化合物和相应的化合物(II)或(II’)可以是旋光体的形式,特别地,化合物(I)、(II)或(II’)可以是下式所示形式 其中R1和R2具有上述所示的相同的含义并且星号是指所述化合物是旋光体的形式。
化合物(I)旋光性的具体例子是(2E)-1-[(1S,2R)-2,6,6-三甲基-3-环己烯-1-基]-2-丁烯-1-酮、(2E)-1-[(1S,2S)-2,6,6-三甲基-3-环己烯-1-基]-2-丁烯-1-酮、1-[(1S,2R)-2,6,6-三甲基-3-环己烯-1-基]-1-乙酮或1-[(1S,2S)-2,6,6-三甲基-3-环己烯-1-基]-1-乙酮。
催化剂是本发明的方法的关键要素。如上所述的催化剂是通过有机金属钌前体和特定的路易斯酸或质子酸在非配位或弱配位的介质里和惰性环境中反应得到的。
作为恰当的钌前体的非限制性例子,可以列举通式[钌(二烯)(烯丙基)2]的化合物,其中“二烯”代表含有两个碳-碳双键的C4-C20,优选C4-C10的烃基基团,例如COD(环辛-1,5-二烯)或NBD(降冰片二烯),或还有庚-1,4-二烯,并且“烯丙基”代表含有C=C-C-或C=C-C*片段的C3-C20,优选C3-C10的烃基基团,例如2-烯丙基或2-甲代烯丙基(参见例如J.-P.Genet et al.,所引用的参考文献;M.O.Albers et al.,Inorganic Synth.,1989,26,249;R.R.Schrock et al.,J.Chem.Soc.Dalton Trans.,1974,951)。
其他合适的钌络合物包括[钌(二烯基)2]类型的化合物,其中“二烯基”代表含有一个碳-碳双键和一个C=C-C-、C=C-C*或C=C-O-片段的C4-C20,优选C4-C15的烃基基团,例如戊二烯基、环戊二烯基、被取代的环戊二烯基(如五甲基-环戊二烯基)、2,4-二甲基戊二烯基、2,3,4-三甲基戊二烯基、2,4-二(叔丁基)-戊二烯基或还有2,4-二甲基-1-氧杂戊二烯基(参见,例如R.D.Ernst et al.,J.Organometallic Chem.,1991,402,17;L.Stahl et al.,Organometallic,1983,2,1229;T.Schmidt et al.,J.Chem.Soc.Chem.Commun.,1991,1427;T.D.Newbound et al.,Organometallics,1990,9,2962),或还有2,5-环辛二烯基或2,5-环庚二烯基(参见,例如P.Pertici et al.,J.Chem.Soc.Dalton Trans.,1980,1961)。
还有其他适合的钌络合物是式[钌(二烯)(三烯)]的钌络合物,其中“三烯”代表含有三个碳-碳双键的C7-C20,优选C7-C12的烃基基团,例如环辛-1,3,5-三烯(COT)、苯或被取代的苯例如六甲基苯。优选的三烯是COT。
另外一种合适的钌络合物是式[钌(四烯)(烯)]的钌络合物,其中“四烯”代表含有四个碳-碳双键的C8-C20,优选C8-C12的烃基基团,例如环辛-1,3,5,7-四烯,并且“烯”代表含有一个碳-碳双键的C2-C10,优选C4-C8的烃基基团,例如环辛烯或环己烯。
根据本发明优选的实施例,这里用作Ru前体的是下式的化合物[Ru(COD)(2-甲代烯丙基)2]、[Ru(COD)(COT)]、[Ru(2,4-二甲基戊二烯基)2](例如L.Stahl et al.或T.D.Newbound et al.,所引用的参考文献)或[Ru(2,4-二甲基-1-氧杂戊二烯基)2]络合物(例如T.Schmidt等所引用的参考文献)。[Ru(COD)(2-甲代烯丙基)2]的制备首先被J.Powell等在J.Chem.Soc.,(A),1968,159中所公开,从实用的角度证实该方法是相当方便的。
在制备催化剂的过程中要使用酸,所述的酸被认定可以使钌前体阳离子化。
在催化剂制备中所使用的第一种合适的酸的类型是质子型的酸。所述的质子酸必须具有弱配位或非配位的阴离子。“弱配位或非配位的阴离子”在这里所表达的含义是在反应条件下不与催化剂发生明显的相互反应的阴离子,催化学领域的技术人员可以很好地理解这种含义。换言之,弱配位或非配位的阴离子是这样一种阴离子,它与催化剂的Ru中心完全不进行配合或者它的配位稳定常数小于式(I)所示的底物的配位稳定常数。
适于制备催化剂的质子酸的非限制性例子是式HX的酸,其中X是ClO4-、R4SO3-,其中R4是氯或氟原子或C1-C8氟代烷基或氟代芳基基团、BF4-、PF6-、SbCl6-、AsCl6-、SbF6-、AsF6-或BR4-,其中R代表被1到5个基团如卤原子或甲基或CF3基团任意取代的苯基基团。
根据本发明的优选实施例,弱配位或非配位的阴离子是BF4-、PF6-、C6F5SO3-、CF3SO3-或还有B[3,5-(CF3)2C6H4]4-,更优选BF4-。
还可以使用上述质子酸的相应醚合物的形式(例如HBF4·R52O,R5是C1-C5烃基基团,如C2H5或C4H9)。这些醚合物是市售的商品或者它们可以通过在含有二烷基醚的溶剂中,例如二氯甲烷和二乙醚的混合物,将AgX与HCl反应得到的。作为氯化银沉淀,它提供了酸的醚合物溶液,根据本发明该溶液可以用于与钌前体的反应中。
在制备催化剂中所使用的第二种合适的酸的类型是路易斯型的酸。这种酸的恰当的例子是FeCl3、AlCl3、SbF5、AsF5或PF5、AgF、Fe(CF3SO3)3、AgBF4、SnCl2、BF3或BMe3。
所述的酸可以是无水形式,或者对于其中的一些酸也可以是水合物的形式。而且,硼或铝的衍生物,特别是BF3可以是以它与醚或羧酸的加合物中的任一种的形式,如R62O或R7COOH,其中R6是C1-C5烷基基团并且R7是C1-C20烷基基团。根据本发明的特定实施例,优选的路易斯酸是BF3或BF3与Et2O、Bu2O或AcOH的加合物。
依照上述,在催化剂的制备中,酸和钌前体是以摩尔比为0.3到3.1反应。根据本发明的优选实施例所述的比率是大约0.5到2。
为了不降低催化剂的有效性,也应该在非配位或弱配位的溶剂中和惰性环境下制备催化剂。“非配位或弱配位的溶剂”表达的含义是不会使催化剂明显失活并且可以使底物与催化剂相互作用的溶剂,催化学领域的技术人员可以很好地理解这种含义。换言之,弱配位或非配位的溶剂是这样一种溶剂,它与催化剂的Ru中心完全不进行配合或者它的配位稳定常数小于式(I)所示的底物的配位稳定常数。
通常,在实验条件下呈惰性并且能够溶解底物和催化剂的任何溶剂都是十分适用的溶剂。在本发明的特别实施例中,上述溶剂是氯化的烃、饱和或不饱和的烃、醚、酯、羧酸、弱配位的酮(位阻酮)或式(I)所示的底物,或它们的混合物。上述溶剂的具体例子是二氯甲烷、庚烷、辛烷、二丁醚、乙酸丁酯、乙酸、叔戊基甲醚、二异丙酮或如上定义的式(IV)的化合物。
“惰性环境”表达的含义是这样一种环境,它与催化剂不反应,并且特别是这种环境的氧气含量低于200ppm,并且优选不超过100ppm。
如我们所知,根据上述方法得到的催化剂(并且该方法中的酸是如上定义的路易斯酸)是新的化合物。所述的催化剂也是本发明的目标物。优选的路易斯酸是BF3、BF3·Et2O、BF3·Bu2O或BF3·(AcOH)2。优选的钌前体是如下的络合物[Ru(COD)(2-甲代烯丙基)2]、[Ru(COD)(COT)]、[Ru(2,4-二甲基戊二烯基)2]或[Ru(2,4-二甲基-1-氧杂戊二烯基)2],并且特别地优选[Ru(COD)(2-甲代烯丙基)2]。
本发明的方法也应该在非配位或弱配位的溶剂中和惰性环境中进行。所述的溶剂和环境如上面催化剂的形成所定义的一样。
本发明过程中所使用的催化剂相对于底物的用量一般为0.01到2摩尔%。在本发明的方法的优选实施例中,所用的催化剂的浓度为约0.05到1摩尔%。更优选地,催化剂的含量为大约0.1到0.4摩尔%。使用过量的催化剂会导致在得到的混合物中出现式(III)的化合物。
本发明过程所能进行的温度是60℃到溶剂或者底物的回流温度之间的温度范围。温度范围优选60℃到180℃,更优选为110℃到165℃,并且最好为110℃到150℃。当然,本领域的技术人员也能够把优选的温度选为起始原料和最终产物及溶剂的熔点和沸点的函数。
然而必须要说明的是当过程温度为150℃到180℃时,在反应结束时得到的混合物中可以含有相当数量的式(III)的化合物,特别是如果在不再观察到底物的转化之后还将该反应在上述温度下保持。
现通过下面的实施例进一步详细地描述本发明,其中的缩写具有本领域的通用的含义,温度用摄氏度(℃)来表示。
具体实施例方式
实施例1在用质子酸得到的催化剂的存在下1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮的异构化20℃,在氮气保护下,向反式1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮(4.52摩尔;反式/顺式=94/5到99/1,纯度≥99%)中搅拌加入HBF4OEt2(4.54毫摩尔的HBF4)并且接着加入[Ru(COD)(甲代烯丙基)2](4.54毫摩尔)。将得到的溶液加热到130℃并且保持此温度在氮气保护下搅拌30分钟。之后,将得到的混合物冷却至20℃即可得到的含有以下物质的混合物(以最终混合物重量百分比计算,通过气相色谱分析得到)反式1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮 6%顺式1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮 1%1-(2,6,6-三甲基-2-环己烯-1-基)-1-乙酮 86%1-(2,2-二甲基-6-亚甲基-1-环己基)-1-乙酮 2%1-(2,6,6-三甲基-1-环己烯-1-基)-1-乙酮 2%实施例2在用路易斯酸得到的催化剂的存在下1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮的异构化20℃,在氮气保护下,向反式1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮(4.52摩尔;反式/顺式=94/5到99/1,纯度≥99%)中搅拌加入BF3·(AcOH)2(2.27毫摩尔的BF3)并且接着加入[Ru(COD)(甲代烯丙基)2](2.27毫摩尔)。将得到的溶液加热到130℃并且保持此温度在氮气保护下搅拌30分钟。之后,将得到的混合物冷却至20℃即可得到含有以下物质的混合物(以最终产物的重量百分比计算,通过气相色谱分析得到)
反式1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮 7%顺式1-(2,6,6-三甲基-3-环己烯-1-基)-1-乙酮 1%1-(2,6,6-三甲基-2-环己烯-1-基)-1-乙酮 87%1-(2,2-二甲基-6-亚甲基-1-环己基)-1-乙酮 2%1-(2,6,6-三甲基-1-环己烯-1-基)-1-乙酮没有观察到实施例3在用路易斯酸得到的催化剂的存在下1-(2,6,6-三甲基-3-环己烯-1-基)-2-丁烯-1-酮的异构化20℃,在氮气保护下,向反式1-(2,6,6-三甲基-3-环己烯-1-基)-2-丁烯-1-酮(25克;130毫摩尔;反式∶顺式=98∶2,纯度≥99%)中搅拌加入BF3·(AcOH)2(0.65毫摩尔)并且接着加入[Ru(COD)(甲代烯丙基)2](0.65毫摩尔)。将得到的溶液加热到130℃并且保持此温度在氮气保护下搅拌60分钟。之后,将得到的混合物冷却至20℃即可得到含有以下物质的混合物(以最终产物的重量百分比计算,通过气相色谱分析得到)反式1-(2,6,6-三甲基-3-环己烯-1-基)-2-丁烯-1-酮 9%1-(2,6,6-三甲基-2-环己烯-1-基)-2-丁烯-1-酮 86%1-(2,2-二甲基-6-亚甲基-1-环己基)-2-丁烯-1-酮1%1-(2,6,6-三甲基-1-环己烯-1-基)-2-丁烯-1-酮 没有观察到
权利要求
1.一种方法,将式(I)所示的底物异构化为含有至少一种式(II)的化合物和至少一种式(II’)的化合物的混合物, 其中每个R1同时或独立地代表氢原子或甲基基团并且R2代表氢原子、直链或支链的C1-4烷基或C2-51-烯基基团; 其中R1和R2具有上述所示相同的含义;所述的方法是在非配位或弱配位的介质中、惰性环境中和催化剂存在的条件下进行,上述催化剂是在非配位或弱配位的介质中和惰性环境中由下面物质之间的反应得到的a)式[钌(二烯)(烯丙基)2]、[钌(二烯基)2]、[钌(四烯)(烯)]或[钌(二烯)(三烯)]的钌前体;和b)式HX的质子酸,其中X是弱配位或非配位的阴离子;或式B(R3)3的路易斯酸,其中R3代表氟化物或被1到5个基团如卤原子或甲基或CF3基团任意取代的苯基基团,或者式FeX3、FeX2、AgX、AlY3、FeY3、FeY2、SnY2、SnY4、AgY、AgY2、SbY5、AsY5或PY5的路易斯酸,X是如上面所定义的基团并且Y是氟或氯原子;酸/钌的摩尔比为0.3到3.1。
2.根据权利要求1的方法,其特征在于化合物(I)、(II)或(II’)是下式 其中R1和R2具有和权利要求1中所示相同的含义并且星号是指所述化合物是旋光体的形式。
3.根据权利要求2的方法,其特征在于所述的底物是(2E)-1-[(1S,2R)-2,6,6-三甲基-3-环己烯-1-基]-2-丁烯-1-酮、(2E)-1-[(1S,2S)-2,6,6-三甲基-3-环己烯-1-基]-2-丁烯-1-酮、1-[(1S,2R)-2,6,6-三甲基-3-环己烯-1-基]-1-乙酮或1-[(1S,2S)-2,6,6-三甲基-3-环己烯-1-基]-1-乙酮。
4.根据权利要求1的方法,其特征在于所述的底物是下式(IV) 其中R1和R2具有和权利要求1中所示相同的含义;并且得到的混合物中含有相应的式(V)和(V’)的化合物, 其中R1和R2具有和权利要求1中所示相同的含义。
5.根据权利要求4的方法,其特征在于R1代表氢原子并且R2代表氢原子或甲基或CH=CHCH3基团。
6.根据权利要求1的方法,其特征在于钌前体是下面通式的化合物i)[钌(二烯)(烯丙基)2],其中“二烯”代表COD(环辛-1,5-二烯)、NBD(降冰片二烯)或庚-1,4-二烯,并且“烯丙基”代表2-烯丙基或2-甲代烯丙基;ii)钌(二烯基)2],其中“二烯基”代表戊二烯基、2,4-二甲基戊二烯基、2,3,4-三甲基戊二烯基、2,4-二(叔丁基)-戊二烯基、2,4-二甲基-1-氧杂戊二烯基或2,5-环辛二烯基或2,5-环庚二烯基;iii)[钌(二烯)(三烯)],其中“二烯”具有上述相同的含义并且“三烯”代表含有环辛-1,3,5-三烯(COT);或iv)[钌(四烯)(烯)],其中“四烯”代表环辛-1,3,5,7-四烯并且“烯”代表环辛烯或环己烯。
7.根据权利要求6的方法,其特征在于钌前体是下面的络合物[Ru(COD)(2-甲代烯丙基)2]、[Ru(COD)(COT)]、[Ru(2,4-二甲基戊二烯基)2]或[Ru(2,4-二甲基-1-氧杂戊二烯基)2]。
8.根据权利要求1的方法,其特征在于X是ClO4-、R4SO3-,其中R4是氯或氟原子或C1-C8氟代烷基或氟代芳基基团、BF4-、PF6-、SbCl6-、AsCl6-、SbF6-、AsF6-或BR4-,其中R代表可被1到5个基团如卤原子或甲基或CF3基团任意取代的苯基基团。
9.根据权利要求8的方法,其特征在于X是BF4-、PF6-、C6F5SO3-、CF3SO3-或还有B[3,5-(CF3)2C6H4]4-。
10.根据权利要求1的方法,其特征在于酸HX是HBF4·Et2O。
11.根据权利要求1的方法,其特征在于路易斯酸是FeCl3、AlCl3、SbF5、AsF5或PF5、AgF、Fe(CF3SO3)3、AgBF4、SnCl2、BF3、BMe3、或BF3与醚或羧酸R62O或R7COOH的加合物,其中R6是C1-C5烷基基团并且R7是C1-C20烷基基团。
12.根据权利要求11的方法,其特征在于路易斯酸是BF3或BF3与Et2O、Bu2O或AcOH的加合物。
13.根据权利要求1的方法,其特征在于非配位或弱配位的介质是氯化的烃、饱和或不饱和的烃、醚、酯、羧酸、弱配位的酮(位阻酮)或者如权利要求1所定义的式(I)的底物,或它们的混合物。
14.根据权利要求1的方法,其特征在于所用的催化剂的浓度相对于底物为约0.1到0.4摩尔%。
15.一种通过下面物质的反应得到的催化剂a)式[钌(二烯)(烯丙基)2]、[钌(二烯基)2]、[钌(四烯)(烯)]或[钌(二烯)(三烯)]的钌前体;和b)式B(R3)3的路易斯酸,其中R3代表氟化物或被1到5个基团如卤原子或甲基或CF3基团任意取代的苯基基团,或者式FeX3、FeX2、AgX、AlY3、FeY3、FeY2、SnY2、SnY4、AgY、AgY2、SbY5、AsY5或PY5的路易斯酸,X是如上面所定义的基团并且Y是氟或氯原子;酸/钌的摩尔比为0.3到3.1并且该反应是在非配位或弱配位的介质中和惰性环境中进行。
16.根据权利要求12的催化剂,其特征在于钌前体如权利要求6或7中所限定的一样。
17.根据权利要求15或16的催化剂,其特征在于路易斯酸是BF3、BF3·Et2O、BF3·Bu2O或BF3·(AcOH)2。
全文摘要
本发明涉及一种碳-碳双键异构化的方法,该方法将2-烷基-环己-3-烯基烷基或烯基酮异构化为含有相应的2-烷基-环己-2-烯基酮和相应的2-亚烷基-环己酮的混合物,该方法使用由合适的钌有机金属前体与酸反应得到的钌络合物作为催化剂。
文档编号C07C49/543GK1890204SQ200480036403
公开日2007年1月3日 申请日期2004年11月30日 优先权日2003年12月16日
发明者丹尼斯·雅各比, 贝萨阿·内法, 克里斯蒂安·沙发伊 申请人:弗门尼舍有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1