一种含苄基化合物的苄基氢官能化修饰碳碳双键或羰基的方法与流程

文档序号:13862573阅读:1437来源:国知局

本发明涉及一种含苄基化合物的苄基氢官能化的方法,特别涉及一种含苄基化合物的苄基氢官能化修饰碳碳双键或羰基的方法,属于有机合成领域。



背景技术:

官能化修饰是有机合成中比较常用的手段,特别是在药物合成中具有比较重要的意义。苄基化合物的由于苯环共轭环的存在,苄基氢相对活泼,容易对其进行修饰,为药物合成提供了新的思路,多年来已经成为研究的热点。以前研究的较多的是在苄基氢上进行取代,修饰官能基团。目前,有报道(如:文献“angew.chem.int.ed.2012,51,2745-2748”,“angew.chem.int.ed.2015,54,1261-1265”,“greenchem.,2015,17,2369-2372”,“org.lett.2015,17,2078-2081”),公开了以2-苄基吡啶为原料,采用空气或叔丁基过氧化氢作为氧化剂,采用过渡金属(铜、锰)或碘化铵作为催化剂,在苄基氢成功修饰炭基,但是这些方法需采用非绿色环保的过渡金属催化剂,且产率较低(如反应1~4)。

另外,有文献报道(如,文献“org.lett.2014,16,2050-2053”,“chem.commun.2014,50,7636-7638”),以2-苄基吡啶为原料,以dmf或dmac为亚甲基化试剂,过硫酸钾或过硫酸钠为氧化剂,在铜催化剂催化作用下反应,在2-苄基吡啶苄基氢上修饰碳碳双键,这些方法虽然可以获得较高的选择性,但是其需采用过渡金属催化剂,对环境影响大,且成本较高,(如反应5和6)。



技术实现要素:

针对现有技术存在的缺陷,本发明的目的是在于提供一种在非金属催化、温和反应条件下通过一步反应在含苄基化合物的苄基氢上高产率、高选择性修饰碳碳双键或羰基的方法。

为了实现上述技术目的,本发明提供了一种含苄基化合物的苄基氢官能化修饰碳碳双键或羰基的方法,该方法是:

1)在保护气氛下,式1含苄基化合物和二甲基亚砜,在过硫酸铵及甲醇钠存在条件下一锅反应,得到式2苯乙烯衍生物;

或者,

2)在空气环境下,式1含苄基化合物和二甲基亚砜,在过硫酸钾及甲醇钠存在条件下一锅反应,得到式3苯基酮衍生物;

其中,

r1为氢、烷基、烷氧基、硝基、卤素或氰基;

r2为芳基或芳香杂环。

优选的方案,r1为氢、甲基、乙基、硝基、氟、氯或氰基;r1进一步优选为氢、硝基、氟、氯或氰基。r1最好为拉电子基团(缺电子),拉电子基团更有利于增加苄基氢的反应活性。

优选的方案,r2为苯基、卤素取代苯基、烷基取代苯基或吡啶。最优选为苯基、吡啶或者含有拉电子取代基的苯基,这些基团更有利于增加苄基氢的反应活性。

优选的方案,反应温度为100~130℃,反应时间为6~24h。最优选在110~120℃,反应10~14h。

优选的方案,保护气氛为氮气和/或惰性气体。

本发明的含苄基化合物的苄基氢官能化修饰碳碳双键或羰基的方法,以2-苄基吡啶为底物对反应进行具体说明:

在反应(1)和反应(2)不同的是:反应(1),在空气条件下,采用过硫酸钾作为氧化剂,苄基氢直接被高选择性反应生成羰基,产率达到95%;反应(2),在氮气保护下,采用过硫酸铵作为氧化剂,苄基氢直接高选择性反应生成碳碳双键,产率达到85%。

基于大量的实验总结和参考文献,本发明的合理反应机制为:在反应(1)中,dmso主要作为极性溶剂,2-苄基吡啶被甲氧负离子夺氢质子变成2-苄基吡啶负离子,2-苄基吡啶负离子的负碳原子被氧气优先氧化成羰基;而在反应(2)中,是在非氧环境中进行,二甲基亚砜同时作为亚甲基化试剂和溶剂,2-苄基吡啶被甲氧负离子夺氢质子生成2-苄基吡啶负离子,而二甲基亚砜在过硫酸铵释放的阳离子作用下重排、脱水,转化成甲基硫甲基阳离子,甲基硫甲基阳离子与2-苄基吡啶负离子结合后,在高温下脱去甲硫醇,生成碳碳双键。

本发明的技术方案中,甲醇钠的摩尔用量为含苄基化合物的2倍左右;过硫酸钾及过硫酸铵为含苄基化合物的2倍左右;在反应(1)中dmso主要作为溶剂,而反应(2)中dmso同时作为溶剂和亚甲基化试剂,其用量是过量的,这属于本领域技术人员可以理解的范围。

相对现有技术,本发明的技术方案带来的有益技术效果:

1)本发明的技术方案对含苄基化合物的苄基氢可以选择不同的反应条件进行选择性修饰炭基或碳碳双键,具有高选择性的特点。

2)本发明的技术方案无需采用过渡金属盐作为催化剂,绿色环保,成本低,且收率高,克服了现有技术必须采用非绿色环保的过渡金属盐作为催化剂,且收率较低的缺陷。

3)本发明的技术方案首次以二甲基亚砜作为亚甲基化试剂,在温和条件下对含苄基化合物的苄基氢修饰双键,且产率高,选择性好。

4)本发明的技术方案通过一锅法一步反应生成α,β-不饱和酮类化合物,步骤简单,流程短,成本低,有利于工业化生产。

附图说明

【图1】为实施例1制备的2-吡啶基苯基酮的核磁氢谱图;

【图2】为实施例1制备的2-吡啶基苯基酮的核磁碳谱图;

【图3】为实施例3制备的2-(1-苯基乙烯)吡啶的核磁氢谱图;

【图4】为实施例3制备的2-(1-苯基乙烯)吡啶的核磁氢谱图。

具体实施方式

以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。

以下实施例中涉及的各种原料及化学试剂等均为市售产品。

1hnmr(400mhz),13cnmr(100mhz),以cdcl3为溶剂,以tms为内标。

多重性定义如下:s(单峰);d(二重峰);t(三重峰);q(四重峰)和m(多重峰);偶合常数(赫兹)。

实施例1

将2-苄基吡啶(0.5mmol)、甲醇钠(1mmol)、k2s2o8(1mmol)和二甲基亚砜(2ml)加入到反应器中,在空气环境中,于在120℃温度下12h,反应结束后,蒸馏回收过量二甲基亚砜,混合物经过层析柱分离,得到2-吡啶基苯基酮;产率95%。

1hnmr(400mhz,cdcl3)δ8.72(d,j=4.6hz,1h),8.14-7.98(m,3h),7.90(t,j=7.7hz,1h),7.59(t,j=7.3hz,1h),7.49(t,j=7.4hz,3h).

13cnmr(101mhz,cdcl3)δ193.9,155.1,148.5,137.0,136.3,132.9,130.9,128.1,126.1,124.6.

实施例2

将2-苄基吡啶(0.5mmol)、甲醇钠(1mmol)、k2s2o8(1mmol)和二甲基亚砜(2ml)加入到反应器中,在空气环境中,于在110℃温度下16h,反应结束后,蒸馏回收过量二甲基亚砜,混合物经过层析柱分离,得到2-吡啶基苯基酮;产率91%。

实施例3

将2-苄基吡啶(0.5mmol)、甲醇钠(1mmol)、(nh4)2s2o8(1mmol)和二甲基亚砜(3ml)加入到反应器中,在氮气环境中,于在120℃温度下12h,反应结束后,蒸馏回收过量二甲基亚砜,混合物经过层析柱分离,得到2-(1-苯基乙烯)吡啶;产率85%。

1hnmr(400mhz,cdcl3)δ8.64(d,j=4.5hz,1h),7.63(t,j=7.7hz,1h),7.30-7.36(m,5h),7.27(d,j=8.6hz,1h),7.21(dd,j=6.8,5.5hz,1h),5.99(s,1h),5.61(s,1h).

13cnmr(101mhz,cdcl3)δ158.5,149.4,149.1,140.4,136.3,128.4,128.3,127.8,122.8,122.4,117.7.

实施例4

将2-苄基吡啶(0.5mmol)、甲醇钠(1mmol)、(nh4)2s2o8(1mmol)和二甲基亚砜(3ml)加入到反应器中,在氮气环境中,于在130℃温度下9h,反应结束后,蒸馏回收过量二甲基亚砜,混合物经过层析柱分离,得到2-(1-苯基乙烯)吡啶;产率82%。

对比实施例1

将2-苄基吡啶(0.5mmol)、乙酸钠(1mmol)、k2s2o8(1mmol)和二甲基亚砜(2ml)加入到反应器中,在空气环境中,于在120℃温度下12h,反应结束后,蒸馏回收过量二甲基亚砜,混合物经过层析柱分离,没有2-吡啶基苯基酮生成。

对比实施例2

将2-苄基吡啶(0.5mmol)、甲醇钠(1mmol)、k2s2o8(1mmol)和二甲基亚砜(3ml)加入到反应器中,在氮气环境中,于在120℃温度下12h,反应结束后,蒸馏回收过量二甲基亚砜,混合物经过层析柱分离,没有2-(1-苯基乙烯)吡啶生成。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1