一种减震齿轮包胶用的生胶的制作方法

文档序号:12093300阅读:1030来源:国知局
本发明属于特种橡胶的生产
技术领域
,特别涉及用于三缸发动机减震齿轮中对齿轮进行包胶用的橡胶的生产工艺。
背景技术
:三缸小排量发动机在具有油耗低,体积小,重量轻的同时,三缸发动机的抖动是先天硬伤。因为三缸发动机工作时,总有两个缸体同时运行,另一个缸体单独运行,二者所产生的力矩无法完全抵消。为了平衡曲轴上的抖动,三缸发动机需要平衡轴来平衡惯性力矩,而平衡轴上的包胶减震齿轮成为了带动平衡轴平衡一阶力矩的关键。目前小排量三缸发动机中所用的包胶减震齿轮基本上被国外大型企业垄断,而国内减震齿轮橡胶材料开发起步晚,研发周期长,投入研发资金和人员不足,导致水平和能力不足,从而导致工况恶劣的三缸发动机只能选择国外的材料和产品,主要出现的传动和减震失效方式为未达到安全扭矩和扭转刚度范围,橡胶与金属表面粘接失效,橡胶刚度在工况条件下失效。氢化丁腈橡胶(HNBR)是由丁腈橡胶进行特殊加氢处理而得到的一种高度饱和的弹性体。氢化丁腈橡胶具有良好耐油性能(对燃料油、润滑油、芳香系溶剂耐抗性良好);并且由于其高度饱和的结构,使其具良好的耐热性能,优良的耐化学腐蚀性能(对氟利昂、酸、碱的具有良好的抗耐性),优异的耐臭氧性能,较高的抗压缩永久变形性能;同时氢化丁腈橡胶还具有高强度,高撕裂性能、耐磨性能优异等特点,是作为三缸发动机减震齿轮包胶的理想选择。氢化丁腈橡胶可以在类发动机工况环境中150℃的油介质中停放很长时间,一定温度下伸长率的无变化且无裂纹出现,高度氢化的HNBR表现出优异的耐热性及耐老化性能。氢化丁腈橡胶在高工况下表现优异,CN104194108公开了耐硫化氢腐蚀的氢化丁腈橡胶组合物,该组合物可用于耐硫化氢耐高温高压的油气环境中,其作为高工况下密封件较为理想,但其不适用于发动机减震齿轮,缺少橡胶与金属表面涂层的粘接能力。技术实现要素:为满足小排量三缸发动机减震齿轮包胶的减振及工况要求,本发明提出一种金属与橡胶界面之间粘结层能发生良好键合的减震齿轮包胶用生胶。本发明的技术方案是:氢化丁腈橡胶为100质量份、硬脂酸为1~2质量份、纳米氧化锌为5~10质量份、4.4一双(2.2-二甲基苄基)二苯胺(防老剂445)为1~2质量份、2,2,4-三甲基-1,2-二氢喹啉聚合物(防老剂RD)为1~2质量份,过氧化二异丙苯(过氧硫化剂DCP)为1~7质量份、硫磺为1~2质量份、N-环己基-2-苯并噻唑次磺酰胺(硫化促进剂CZ)为1~2质量份、中超耐磨炭黑(炭黑N330)为10~20质量份、石墨烯为0.1~3质量份、补强剂365为5~10质量份。本发明可以应用于对小排量三缸发动机齿轮的包胶中,都可使制成的包胶齿轮具有很好的耐油、耐温、高阻尼和较好的机械性能,以保持包胶齿轮在发动机工作温度范围-30℃~185℃和95%工况温度125℃下,保持良好的往复使用机械性能。本发明的生胶可在较高工况下使用,在橡胶-金属粘接模型中,使用CHEMLOK公司的双涂型橡胶与金属热胶粘剂211与411产品,两者扩散性能良好,之间形成较好的过渡层,CHEMLOK411胶粘剂在硫化粘结过程中与Fe或其氧化物形成少量化学键的连接,在成型压力的作用下,CHEMLOK211与氢化丁腈橡胶分子之间相互接近,当分子间距离减小到一定程度时,硫化后产生化学键,成为联结减震齿轮与橡胶的理想过渡层。进一步地,本发明所述纳米氧化锌为亚微米碳酸钙负载纳米氧化锌,目的是防止氧化锌聚集,以达到协同补强以及提高高温环境下的扭矩的作用。优选的质量比是:所述亚微米碳酸钙负载纳米氧化锌中纳米氧化锌与碳酸钙的质量比为4:1。此质量比能较好的分散体系中的纳米氧化锌,并能协同补强以及提高高温环境下的扭矩。另外,本发明所述石墨烯为石墨烯微片,目的是改善硬度及材料的阻尼性能。所述硫磺和过氧硫化剂的质量比为1:3.5。目的是使橡胶获得适当的交联度,同时与联结胶粘剂层形成强的键合作用。本发明所述石墨烯和炭黑的质量比为1.5:15。目的是使橡胶获得合适的硬度及阻尼性能与理想的包胶齿轮扭转刚度。优选的质量比是:所述石墨烯微片与炭黑的质量比为1:10。此质量比使得石墨烯微片能与炭黑起到了协同增强的作用,提高材料的阻尼性能。还有,本发明所述生胶中还包括1-3质量份N,N′—间苯撑双马来酰亚胺(硫化剂PDM)。生胶配方中加入硫化剂PDM可以很好地提高粘接强度以及包胶齿轮的扭转刚度。具体实施方式一、准制包胶用生胶:下表为生胶配方对比例1:下表为生胶配方对比例2:下表为生胶配方实施例1:下表为生胶配方实施例2:二、包胶应用:根据橡胶-金属粘接模型,使用CHEMLOK公司的双涂型橡胶与金属热胶粘剂211与411产品,采用CHEMLOK411均匀涂刷减震齿轮待包胶表面,室温干燥半小时后,采用CHEMLOK211再均匀涂刷一层,室温干燥半小时。采用注压模具,将生胶注入齿轮骨架的间隙中,在150℃下硫化15-20min后脱模,得到初步硫化的包胶齿轮。将初步硫化的包胶齿轮置于150℃烘箱中,进行二次硫化,1小时后取出,得到完全硫化后的包胶齿轮。三、试验及结果:项目对比例1对比例2实施例1实施例2最大扭矩(N•m)1219.211124.891206.221211.74最大转角(°)46.9744.5542.5639.3740N•m处扭转刚度(N•m/rad)505.87644.10644.10690.6640N•m处扭转角度(°)4.255.154.775.2680N•m处扭转刚度(N•m/rad)248.16224.16356.89523.2280N•m处扭转角度(°)10.569.858.668.12100N•m处扭转刚度(N•m/rad)274.28237.23374.67540.80100N•m处扭转角度(°)15.4214.7912.0511.43阻尼系数0.2900.3070.4000.415在室温23℃下,将以上各例制成的包胶齿轮进行扭转测试仪,测定的包胶齿轮的性能,测试结果见上表。对比以上各例,可以发现对比例1中未加入石墨烯微片、硫化剂PDM,并且只加入了2.5质量份的过氧硫化剂(DCP),80N.m时的扭转刚度和阻尼系数远小于实施例2的结果。对比例2相比于对比例1多加入了1质量份的DCP,扭转刚度及阻尼系数略微有所提升。实施例1相比于对比例1多加入了1质量份的DCP、3质量份的PDM以及1质量份的石墨烯微片,结果显示扭转刚度及阻尼系数得到很大程度上的提升。实施例2比实施例1多加入0.5质量份的石墨烯微片,阻尼系数得到进一步提升,而工况扭矩80N.m处的扭转刚度得到了较大的改善。通过对比,可见DCP的比例的改善,一定程度上可以更好的与硫磺形成协同硫化体系;PDM的加入很大程度上增加的体系的交联密度,改善了包胶的力学性能;石墨烯微片的加入与炭黑起到了协同增强的作用,提高材料的阻尼性能。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1