含萘[1,2‑c;5,6‑c]二[1,2,5]噻二唑的共轭聚合物材料及其应用的制作方法

文档序号:13904198阅读:180来源:国知局
含萘[1,2‑c;5,6‑c]二[1,2,5]噻二唑的共轭聚合物材料及其应用的制作方法

本发明涉及一种应用于有机太阳电池领域的可交联共轭聚合物材料,具体涉及到一种含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的可交联共轭聚合物材料及其应用。



背景技术:

能源短缺、环境污染是我国经济可持续发展面临的重大问题,同时也是世界各国重视关注的问题。发展新型绿色能源技术是解决上述问题的重要途径之一,而太阳能由于其具有的绿色可再生、储量大、分布广和易获取等优势成为广泛关注的焦点。因此发展太阳能发电技术,对于降低污染和减少二氧化碳排放,实现低碳经济的发展具有重要意义。其中,利用有机半导体材料制备的有机太阳电池,可以通过溶液加工方式制备出质量轻、成本低、可柔性弯曲的器件,还可通过卷对卷(roll-to-roll)方式高速制备大面积器件,很好的克服了无机太阳电池器件面临的部分问题。此外,有机太阳电池作为一种新型薄膜光伏电池技术,具有全固态、光伏材料性质可调范围宽、可实现半透明、可制成柔性电池器件以及大面积低成本制备等突出优点,极具潜力应用在建筑物外窗、汽车挡风玻璃、可折叠窗帘等场所。

在众多光电材料中,萘[1,2-c;5,6-c]二[1,2,5]噻二唑是一类最近几年报道的性能优异的新型缺电子单元。萘[1,2-c;5,6-c]二[1,2,5]噻二唑分子的化学结构是由两个苯并噻二唑(bt)分子以“肩并肩”的形式组合到一起的,分子式如下所示:

萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元由于分子中噻二唑环本身具有较强的缺电子性,因此具有较强的吸电子能力,进而拓宽聚合物光谱的吸收范围,提高电流值。另一方面,萘[1,2-c;5,6-c]二[1,2,5]噻二唑分子较大的共轭平面呈现出强烈的自身聚集倾向,因此能有效的诱导分子链呈现出有序的堆积,增强聚合物的迁移率。这两方面的共同作用使得基于萘[1,2-c;5,6-c]二[1,2,5]噻二唑的聚合物具有优异的光电性质。

然而,基于萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的高性能共轭聚合物,在制备有机太阳电池器件时需要较高的温度(约100℃),需要通过热甩进行加工,且其活性层形貌往往很容易发生聚集,从而导致有机太阳电池器件迅速滚降,这对有机太阳电池的实际应用非常不利。



技术实现要素:

本发明的目的在于一种提供含交联基团的共轭聚合物材料,这种材料作为活性层材料不仅能够获得高效的有机太阳电池器件,而且还能通过光照或者加热的条件下生成不溶不熔的网状聚合物膜,将活性层形貌固定,获得形貌稳定,器件性能稳定的有机太阳电池器件。

本发明的目的还在于提供所述的含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体材料在有机光电转换器件中的应用。

本发明的目的通过如下技术方案实现:

一种含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体材料,所述有机半导体材料的结构式为:

其中,d为所述有机半导体材料中采用的不同的富电子性共轭单元;g为含有乙烯基的交联基团或含有环状烷氧基的交联基团;r1为氢或具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代;r2为具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代;x、y分别为所述聚合物材料主链中不同片段的的相对含量,其中,0<x<1,0<y<1,且x+y=1;n为所述有机半导体材料的聚合度,n为1到10000的自然数。

所述的共轭聚合物中d为噻吩、并噻吩、二联噻吩、三联噻吩、氟代噻吩、氟代联噻吩、并三噻吩、苯并二噻吩、噻唑或苯环。

所述d单元优选为以下结构中的一种:

上述结构式中的r为氢或具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。

所述共轭聚合物材料中含有乙烯基的交联基团具有以下结构的一种以上:

所述共轭聚合物材料中含有环状烷氧基的交联基团,其环状烷氧基为三元环或四元环烷氧基,优选具有以下结构的一种以上:

上述含可交联基团取代的共轭聚合物可作为吸光活性层材料,应用在有机太阳电池器件中。在光照或加热条件下,将所述含可交联基团的共轭聚合物材料加工后,生成不溶不熔的互穿网络聚合物,作为吸光活性层应用在有机太阳电池器件中。该聚合物制备的活性层不仅能够保持较高的能量转换效率,而且能够锁定活性层形貌,消除聚合物运动对形貌对改变,解决有机太阳电池效率快速滚降的问题。

与现有技术相比,本发明的主要优点在于:

含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的共轭聚合物材料在有机太阳电池中表现出优异的器件性能。所述共轭聚合物材料具有共轭的主链及功能化的侧链基团,其中功能化的侧链基团为可交联度取代基团g,由于功能化取代基的存在,所述共轭聚合物材料可以在正常的加工成膜后,在光照或加热条件下,生成不溶不熔的互穿网络聚合物,对活性层形貌进行锁定,能够使有机太阳电池器件获得高效率的同时具有更长的器件寿命,适于制作高效稳定的有机太阳电池器件,解决有机太阳电池效率快速滚降的问题,同时获得了较高的能量转换效率。

附图说明

图1为实施例4所制备的经交联处理的p1膜、未经交联以处理的p1膜经氯苯溶液洗脱处理后的吸光度曲线图。

图2为经交联处理的、未经交联以处理的有机太阳电池器件的短路电流-电压关系曲线图。

具体实施方式

以下结合具体实施例来对含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体的制备与应用作进一步的说明。但本发明所要求的保护范围并不局限于实施例所涉及的范围。

实施例1、3,7-双(4-烷基噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑的制备,反应式如下:

以制备3,7-双(4-(2-辛基十二烷基)噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑为例予以说明。在50毫升的两口烧瓶中加入3,7-二溴-萘[1,2-c;5,6-c]二[1,2,5]噻二唑(5g,10mmol),三丁基-(4-(2-辛基十二烷基)噻吩-2-基)烷锡(26.2g,40mmol),通氮气十五分钟,然后加pd(pph3)4(100mg,2%),在氮气保护下加入无水dmf30ml,加热到120℃反应12小时。常规ch2cl2萃取处理后,硅胶过柱分离提纯,展开剂使用二氯甲烷:正己烷(1:8,体积比),最后将产物用乙醇重结晶提纯得到橙红色固体(3.5g,产率42%)。

实施例2、3,7-双(5-溴-4-烷基噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑的制备,反应式如下:

以制备3,7-双(5-溴-4-辛基十二烷基噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑为例予以说明。在50ml的单口瓶中加入3,7-二(4-(2-辛基十二烷基)噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑(1.94g,2mmol),加入25ml四氢呋喃充分搅拌将其溶解,在充分搅拌下分4次加入n-溴代丁二酰亚胺(nbs)(391mg,2.2mmol),室温下避光反应12小时。常规ch2cl2萃取处理后,硅胶过柱分离提纯,展开剂使用二氯甲烷:石油醚(1:8,体积比),最后将产物用乙醇重结晶提纯得到红色固体(1.8g,产率85%)。

实施例3、含可交联基团萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的制备,反应式如下:

在50毫升的两口烧瓶中加入化合物1(5g,10mmol),化合物2(18.2g,40mmol),通氮气十五分钟,然后加pd(pph3)4(100mg,2%),在氮气保护下加入无水dmf30ml,加热到120℃反应12小时。常规ch2cl2萃取处理后,硅胶过柱分离提纯,最后将产物用乙醇重结晶提纯得到橙红色固体化合物3(2.3g,产率40%)。

在50ml的单口瓶中加入化合物3(1.15g,2mmol),加入25ml四氢呋喃充分搅拌将其溶解,在充分搅拌下分4次加入n-溴代丁二酰亚胺(nbs)(391mg,2.2mmol),室温下避光反应12小时。常规ch2cl2萃取处理后,硅胶过柱分离提纯,最后将产物用乙醇重结晶提纯得到红色固体化合物4(1.29g,产率88%)。

实施例4、聚合物的制备,反应式如下:

聚合物的制备包括以下步骤:称取化合物m1、化合物m2和化合物4于反应管中,加入氯苯(3ml),通氩气20分钟。随后快速加入催化剂及配体,pd2(dba)3,p(o-tol)3,通氩气使反应管中充满氩气,盖好盖子,进行聚合反应,于140℃反应48小时。反应结束,将反应液滴入甲醇中析出聚合物,然后将聚合物用丙酮、正己烷、二氯甲烷在索氏提取器中洗涤,最后用氯仿反抽提得到聚合物,最后将聚合物在真空干燥箱中烘干,得到聚合物p1(x:y=90:10)。

实施例5、以实施例4所制备的聚合物p1交联处理后具有抗溶剂洗脱的性能

将p1在氯苯中溶解,加入质量分数为1%的1,8-辛二硫醇,其中硫醇官能团的作用是在紫外光照射下与烯键发生点击化学反应,使聚合物进行交联反应。以0.45pm有机滤膜过滤,在普通玻璃片上旋涂成膜,厚度大约为100纳米。通过uv测试,测的p1成膜后的吸光度,对应于图1中的曲线1。之后将p1膜在波长为365纳米的紫外光下照射1分钟,使交联基团烯键与硫醇基团发生点击化学反应,形成不溶不熔的交联网状膜。再用氯苯洗脱刚交联过的p1膜,通过uv测试洗脱后的p1膜的吸光度,对应于图1中的曲线3。同时,对比了未交联的p1的抗溶剂洗脱性能,对应于图1中的曲线2。通过观察用氯苯洗脱后p1膜吸光度的下降程度,就可看出交联程度,吸光度下降越多,表明大部分聚合物被氯苯洗掉,交联度低;吸光度下降越少,则说明大部分聚合物不能被氯苯洗掉,交联度高。通过对图1分析可知,未交联时,用氯苯溶剂洗过后,p1膜的吸光度(曲线2)下降了60%,而光照交联后,用氯苯溶剂洗脱后,p1膜的吸光度几乎不下降(曲线3),100%保持原有的吸光度。这说明p1膜发生了交联,具有优良的抗溶剂洗脱性能。

实施例6、实施例4所制备的聚合物p1作为吸光活性层在有机太阳电池器件中的应用

以金属银为阴极的聚合物太阳电池器件的结构为:ito/pedot:pss/聚合物太阳电池活性层/pfn-br/ag。器件制作过程为:以预先清洗的ito玻璃为阳极,在ito玻璃上旋涂40纳米的水溶性聚合物pedot:pss;干燥后继续旋涂聚合物太阳电池活性层(p1:pc71bm),对于活性层材料需往溶液中加入1%的1,8-辛二硫醇,并且成膜后在波长为365纳米的紫外灯照射1分钟;干燥后接着旋涂水醇溶聚合物pfn-br的甲醇溶液,控制厚度为5纳米,最后真空蒸镀100纳米的ag金属阴极。在ito和ag金属电极间施加正偏压,在100毫瓦每平方厘米的am1.5模拟太阳光的照射下测量其电池特性,并且对其器件进行了寿命测试,时间为100小时。测量结果如表1、2所示。

表1:p1:pc71bm(交联处理)聚合物太阳电池的光伏性能参数

表2:p1:pc71bm(未交联处理)聚合物太阳电池的光伏性能参数

由此可见,对于有机太阳电池器件来说,活性层使用本发明所述的可交联的活性层材料p1之后,能够获得较高的能量转换效率;而且,经过交联后的活性层具有稳定的形貌,因此,在器件寿命测试中,有机太阳电池器件表现出优异的稳定的性能,器件效率在100小时后,仍然能够维持在9%以上,相对比不进行交联处理的器件,其器件稳定性有了大幅度的提升,说明了本发明的可行性和可交联聚合物材料在有机光伏器件的应用潜力。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1