基于连呋喃的n型共轭聚合物及其在有机光电器件中的应用的制作方法

文档序号:13904195阅读:534来源:国知局
基于连呋喃的n型共轭聚合物及其在有机光电器件中的应用的制作方法

本发明涉及高分子光电材料领域,具体涉及基于一类主链结构为连呋喃与萘酰亚胺共聚的n型共轭聚合物及其在有机光电器件中的应用。



背景技术:

随着全球对于能源需求的逐年增加,石油、煤炭等传统能源的日益枯竭,以及对保护地球生态环境的需要,全世界越来越多的科学家将研究集中在氢气、太阳能等取之不尽用之不竭的可再生清洁能源。

已经成熟的无机硅、砷化镓、磷化铟等基于无机材料的光伏器件已经在市场上占有主导地位,然而由于其对于材料纯度的要求高,加工过程中会产生高能耗及污染等问题,且其价格非常昂贵,因此在追求低成本和绿色环保的今天,其大规模应用受到了限制。

有机光伏器件作为一种新型薄膜光伏电池技术,具有全固态、光伏材料性质可调范围宽、可实现半透明、柔性电池、具有大面积低成本制备潜力等突出优点。有机材料的光伏性能可调范围宽,可利用化学手段对材料的能级、载流子迁移率以及吸收等性能进行有效的调控。有机/聚合物光伏器件可采用打印、印刷等方法进行加工,可借鉴传统塑料的加工工艺,通过卷对卷滚动加工流程制造大面积、柔性的薄膜光伏器件,该生产工艺能够有效降低光伏电池的制造成本。有机光伏器件几乎不受环境和场地限制,在许多场合可将光能转换为电能,同时与无机半导体光伏器件有非常强的互补性,无疑具有巨大的商业开发价值和市场竞争力。因此有机光伏器件的研究引起了广泛关注,以有机光伏器件为核心的科学研究已经成为一个世界范围内竞争激烈的材料科学前沿研究领域。

有机光伏器件的受体研究进展缓慢,早期的研究以富勒烯为主。最近两年来,非富勒烯进展较快,然后以共轭聚合物为受体的报道相对较少,效率也不高。其主要原因是现有的受体的吸收系数不高,吸收光谱不够宽所导致的。通过对于共轭聚合物分子结构的调节,可以有效地改善这些问题,并提高以共轭聚合物为受体的有机光伏器件的性能。



技术实现要素:

本发明的目的在于设计并合成一类主链结构为连呋喃与萘酰亚胺共聚的n型共轭聚合物作为电子受体材料用于有机光伏器件。

本发明技术方案如下。

基于连呋喃的n型共轭聚合物,所述聚合物结构如下:

其中,n为小于100万的正整数,r1,r2为烷基链。

进一步地,所述的r1、r2为具有1~40个碳原子的直链、支链或者环状烷基链,所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基,甲基,乙基,甲氧基、硝基取代;所述直链、支链或者环状烷基链中氢原子被氟原子或上述官能团取代;所述r1、r2为相同基团或者不相同基团。

进一步地,r3,r4,r5,r6为氢、氟、氯、溴、碘原子或者为具有1~40个碳原子的直链、支链或者环状烷基链;

进一步地,所述直链、支链或者环状烷基链中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基,甲基,乙基,甲氧基、硝基取代;所述直链、支链或者环状烷基链中氢原子被氟原子或上述官能团取代。

主链结构为连呋喃与萘酰亚胺共聚的n型共轭聚合物作为电子受体用于有机光伏器件中。

本发明共轭聚合物由两个部分组成,萘二酰亚胺和取代连呋喃共轭结构。所述共轭聚合物具有较宽的吸收光谱和吸收系数以及较高的电子迁移率,可作为高效的电子受体用于高效有机光伏器件中。本发明设计了d-a共聚的n型半导体共轭聚合物,能够极大地提高聚合物的吸收系数,拓宽吸收光谱,能够极大地提高电池器件的光电流以及电池器件效率;所述的新型n型共轭聚合物作为电子受体能够达到短路电流,开路电压和填充因子的平衡,制备能量转化效率超过10%的全聚合物光伏器件,远超过基于现有受体的电池性能。

本发明所述的新型d-a结构的n型共轭聚合物通过suzuki或stille聚合反应得到。

本发明中使用的有机光伏器件结构如图1所示,由衬底1、阴极2、阴极界面层3、光吸收层4、阳极界面层5、阳极6或由衬底1、阳极2、阳极界面层3、光吸收层4、阴极界面层5、阴极6依次层叠构成。光吸收层受体由本发明合成的共轭聚合物组成。

本发明光伏器件中,阳极材料优选为铝、银、金、钙/铝合金或钙/银合金。

本发明所述阳极界面层优选为有机共轭聚合物(如聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐)或无机半导体。

本发明所述阴极优选为金属、金属氧化物(如氧化铟锡导电膜(ito),掺杂二氧化锡(fto),氧化锌(zno),铟镓锌氧化物(igzo))和石墨烯及其衍生物中的至少一种。

本发明所述衬底优选为玻璃、柔性材料(如聚酰亚胺、聚对苯二甲酸乙二醇酯、乙烯对苯二甲酸酯、聚萘二甲酸乙二醇酯或其他聚酯材料)、金属、合金和不锈钢薄膜中的至少一种。

与现有技术相比,本发明具有以下优点:

(1)本发明设计了d-a交替的n型半导体共轭聚合物,能够极大地提高聚合物的吸收系数,拓宽吸收光谱,能够极大地提高电池器件的光电流以及电池器件效率;

(2)所述的新型d-a结构的n型共轭聚合物作为电子受体能够达到短路电流,开路电压和填充因子的平衡,制备能量转化效率超过10%的全聚合物光伏器件,远超过基于现有受体的电池性能。

附图说明

图1有机光伏器件结构示意图;

图2代表性所述的新型d-a结构的n型共轭聚合物(p1,p2,p3)的紫外-可见光-近红外吸收谱图;

图3代表性所述的新型d-a结构的n型共轭聚合物(p4,p5)的紫外-可见光-近红外吸收谱图;

图4电池结构为ito阴极/阴极界面层/活性层/阳机界面层/阳极(倒装结构)时,代表性含本次发明的共轭聚合物(p1,p2,p3)作为电子受体材料时电池器件的电流-电压曲线图;

图5电池结构为ito阴极/阳极界面层/活性层/阴机界面层/阳极(正装结构)时,代表性含本次发明的共轭聚合物(p1,p2,p3)作为电子受体材料时电池器件的电流-电压曲线图。

图6电池结构为ito阴极/阴极界面层/活性层/阳机界面层/阳极(倒装结构)时,代表性含本次发明的共轭聚合物(p4,p5)作为电子受体材料时电池器件的电流-电压曲线图。

具体实施方式

下面通过具体实施例对本发明作进一步的说明,其目的在于帮助更好的理解本发明的内容,具体包括合成、表征与器件制备,但这些具体实施方案不以任何方式限制本发明的保护范围。

实施例1

代表性合成路线如下:

(1)单体m1,m5按照文献[journalofmaterialschemistryc,2015,3(34):8904-8915.]公开的方法合成。

(2)单体m2,m3,m4,m6,m7按照文献[journaloftheamericanchemicalsociety,2011,133(5):1405-1418.]公开的方法合成。

(3)聚合物p1,p2,p3的合成:

将单体m1(0.5mmol)和单体m2(0.5mmol)加入到25ml两口烧瓶中,通入氮气保护,加入8ml甲苯。抽换气两次后加入5mgpd(pph3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物p1,产率90.7%。

将单体m1(0.5mmol)和单体m3(0.5mmol)加入到25ml两口烧瓶中,通入氮气保护,加入12ml甲苯。抽换气两次后加入7mgpd(pph3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物p2,产率87.9%。

将单体m1(0.5mmol)和单体m4(0.5mmol)5加入到25ml两口烧瓶中,通入氮气保护,加入11ml甲苯。抽换气两次后加入4mgpd(pph3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物p3,产率92.2%。

(5)聚合物p4,p5的合成

将单体m5(0.5mmol)和单体m6(0.5mmol)加入到25ml两口烧瓶中,通入氮气保护,加入11ml甲苯。抽换气两次后加入3mgpd(pph3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物p4,产率91.1%。

将单体m5(0.5mmol)和单体m7(0.5mmol)5加入到25ml两口烧瓶中,通入氮气保护,加入11ml甲苯。抽换气两次后加入4mgpd(pph3)4,95℃反应12h后用甲醇将聚合物沉淀出来,洗涤三次。得深色聚合物p5,产率89.3%。

将所得的聚合物进行溶液的吸收光谱的测定,如图2和图3所示。从溶液的浓度和所测得的吸收值可以计算出聚合物p1,p2,p3的吸收系数。p1,p2,p3,p4,p5在最高峰的吸收系数分别为1.37*105cm-1,1.21*105cm-1,1.23*105cm-1,1.45*105cm-1和1.19*105cm-1

实施例2

以实施例1所合成的共轭聚合物p1,p2,p3(结构中ab组分相同)作为电子受体在有机光伏器件(ito阴极/阴极界面层/活性层/阳机界面层/阳极)中应用

将ito导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ito上旋凃一层5nm厚的pfn-br,然后旋涂活性层材料ptb7-th/p1,ptb7-th/p2,ptb7-th/p3,厚度为110纳米,最后蒸镀moo3和al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的倒装电池器件的电流-电压曲线如图4所示,相关的数据在表一中列出。可以看出,本发明所述的新型连呋喃结构的n型共轭聚合物能够极大地提高电池器件的电流,提高电池效率。主要是在填充因子,短路电流以及开路电压达到了很好的平衡。器件性能超过目前所报道的最好值(energyenviron.sci.,2017,10,1243-1251;adv.mater.2016,28,1884–1890)。

实施例3

以实施例1所合成的共轭聚合物p1,p2,p3(结构中ab组分相同)作为电子受体在有机光伏器件(ito阳极/阳极界面层/活性层/阴机界面层/阴极)中应用

将ito导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ito上旋凃一层20nm厚的pedot:pss,然后旋涂活性层材料ptb7-th/p1,ptb7-th/p2,ptb7-th/p3,厚度均为100纳米。然后旋涂一层5nm厚的pfn-br,最后蒸镀al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的正装电池器件的电流-电压曲线如图5所示,相关的数据在表一中列出。可以看出,本发明所述的连呋喃结构的n型共轭聚合物能够极大地提高电池器件的电流,并且填充因子也较高,器件效率最高可达10.92%。

实施例4

以实施例1所合成的共轭聚合物p4,p5(结构中ab组分不同)作为电子受体在有机光伏器件

(ito阳极/阳极界面层/活性层/阴机界面层/阴极)中应用

将ito导电玻璃,方块电阻~20欧/平方厘米,预切成15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,氮气吹哨后置于恒温烘箱备用。在ito上旋凃一层20nm厚的pedot:pss,然后旋涂活性层材料ptb7-th/p4,ptb7-th/p5,ptb7-th/p3,厚度均为100纳米。然后旋涂一层5nm厚的pfn-br,最后蒸镀al电极。所有制备过程均在提供氮气氛围的手套箱内进行。所制备的正装电池器件的电流-电压曲线如图5所示,相关的数据图6所示并在表一中列出。可以看出,本发明所述的新型含醌式结构的n型共轭聚合物能够极大地提高电池器件的电流,并且填充因子也较高,器件效率最高可达10.64%。

表1代表性共轭聚合物作为电子受体材料时,有机光伏器件的性能参数

本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1