一种D-A型共轭聚合物有机热电薄膜材料及其制备方法与流程

文档序号:15624924发布日期:2018-10-09 22:44阅读:247来源:国知局

本发明涉及有机热电材料领域,尤其涉及一种d-a型共轭聚合物有机热电薄膜材料及其制备方法。



背景技术:

经济社会的发展离不开能源的持续供应,在如今石油、煤炭等化石能源日益匮乏,能源危机和环境污染等问题不断出现的国际大背景下,获取新型洁净能源已变得极其迫切。热电材料,又称温差电材料,是利用固体内部载流子和声子的输运及相互作用来实现热能和电能之间相互转换的半导体功能材料,其具有体积小、质量轻、运行安静且无需转换介质和机械可动部分等优点,其作为一种新型能源材料被广泛关注。

热电材料的性能由热电优值zt=s2σt/κ来表征,其中s为材料的seebeck系数,σ为电导率,t为热力学温度,κ为热导率,s2σ称为功率因子。zt值越大热电转换效率越高,其热电材料的性能就越优异,因此一种优异的热电材料需要具有较大的seebeck系数、高电导率以及低热导率。无机材料由于具有较高的seebeck系数和电导率,在热电材料领域得到快速发展,部分材料在热电偶控温和半导体制冷等领域已广泛应用。常用的无机热电材料主要有碲化铋,碲化铅,锗化硅,方钴矿以及一些金属硅化物和金属氧化物等,但这些无机材料一般也同时具有较高的热导率,因此无机热电材料的最高zt值也不大,约在1左右。此外,无机热电材料还存在加工困难、价格昂贵、有毒等缺点,也阻碍了其商业化发展。

因此,现有技术还有待于改进和发展。



技术实现要素:

鉴于上述现有技术的不足,本发明的目的在于提供一种d-a型共轭聚合物有机热电薄膜材料及其制备方法,旨在解决现有的无机热电材料热导率较高、以及加工困难、有毒、价格昂贵等问题。

本发明的技术方案如下:

一种d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,包括步骤:

a、在惰性气氛下,以三(二亚苄基丙酮)二钯为催化剂,三(邻甲苯基)磷为配体,将单体i:和单体ii:加入到氯苯溶剂中进行stille偶联聚合反应,其中,单体i中的x为氧原子、噻吩和噻吩并噻吩中的一种;

b、将反应后溶液加入到甲醇溶剂中并进行离心处理,去除上清液后,得到聚合物粗产物;

c、分别以甲醇、丙酮、正己烷作为溶剂对所述聚合物粗产物进行索氏提取,得到提纯后的d-a型共轭聚合物有机热电材料

d、将所述d-a型共轭聚合物有机热电材料溶解在氯苯溶剂中,并将得到的溶液滴加到基片上,待氯苯溶剂挥发后得到致密的d-a型共轭聚合物有机热电薄膜材料。

所述的d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,所述步骤a中加入的单体i和单体ii的摩尔比为1:1。

所述的d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,所述stille偶联聚合反应的温度为100-120℃,时间为70-75h。

所述的d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,所述步骤b中的离心速度为2500-3500r/min,离心时间为5-15min。

所述的d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,所述步骤d中,d-a型共轭聚合物有机热电材料溶解在氯苯溶剂中的浓度为15mg/ml。

所述的d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,所述步骤d之后还包括:

e、将所述d-a型共轭聚合物有机热电薄膜材料浸泡在无水三氯化铁的硝基甲烷溶液中进行掺杂处理,得到掺杂的d-a型共轭聚合物有机热电薄膜材料。

所述的d-a型共轭聚合物有机热电薄膜材料的制备方法,其中,所述无水三氯化铁的硝基甲烷溶液的浓度为0.1mol/l,掺杂时间为8-15min。

一种d-a型共轭聚合物有机热电薄膜材料,其中,采用上述任意一种制备方法制备得到,所述d-a型共轭聚合物有机热电薄膜材料的化学结构式为:其中,x为氧原子、噻吩和噻吩并噻吩中的一种。

有益效果:与传统的无机热电材料相比,本发明提供的d-a型共轭聚合物有机热电薄膜材料易溶于常用的四氢呋喃、二氯甲烷、三氯甲烷、氯苯等有机溶剂中,因此具有较好的溶液可加工性。此外,该类d-a型共轭聚合物有机热电薄膜材料还具有较高的seebeck系数和热电性能,同时也具有较好的柔韧性,使得该有机热电薄膜材料有望应用于柔性可穿戴热电设备中;并且本发明提供的d-a型共轭聚合物有机热电薄膜材料制备方法简单易实现,且成本低廉。

附图说明

图1为本发明d-a型共轭聚合物有机热电薄膜材料的凝胶渗透色谱图曲线;

图2为本发明d-a型共轭聚合物有机热电材料溶解在氯苯溶液的紫外-可见吸收光谱图;

图3为本发明d-a型共轭聚合物有机热电薄膜材料的紫外-可见吸收光谱图;

图4为本发明d-a型共轭聚合物有机热电薄膜材料的循环伏安特性曲线;

图5为本发明d-a型共轭聚合物有机热电薄膜材料掺杂前和掺杂后的x射线衍射谱图;

图6为本发明d-a型共轭聚合物有机热电薄膜材料横截面的扫描电镜放大图;

图7为本发明d-a型共轭聚合物有机热电薄膜材料掺杂后的赛贝克系数随温度变化的曲线;

图8为本发明d-a型共轭聚合物有机热电薄膜材料掺杂后的赛贝克系数随温度变化的曲线;

图9为本发明d-a型共轭聚合物有机热电薄膜材料掺杂后的功率因子随温度变化的曲线。

具体实施方式

本发明提供一种d-a型共轭聚合物有机热电薄膜材料及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

为本发明提供一种d-a型共轭聚合物有机热电薄膜材料,其中,包括步骤:

s10、在惰性气氛下,以三(二亚苄基丙酮)二钯为催化剂,三(邻甲苯基)磷为配体,将单体i:和单体ii:加入到氯苯溶剂中进行stille偶联聚合反应,其中,单体i中的x为氧原子、噻吩和噻吩并噻吩中的一种;

s20、将反应后溶液加入到甲醇溶剂中并进行离心处理,去除上清液后,得到聚合物粗产物;

s30、分别以甲醇、丙酮、正己烷作为溶剂对所述聚合物粗产物进行索氏提取,得到提纯后的d-a型共轭聚合物有机热电材料

s40、将所述d-a型共轭聚合物有机热电材料溶解在氯苯溶剂中,并将得到的溶液滴加到基片上,待氯苯溶剂挥发后得到致密的d-a型共轭聚合物有机热电薄膜材料。

具体来说,性能优异的热电材料需要具有较大的seebeck系数和电导率以及低热导率,然而由于现有的无机热电材料的热导率较高,导致其热电性能较差;同时无机热电材料还存在加工困难、价格昂贵以及毒性较强等缺点,这严重阻碍了热电材料的商业化发展。

为解决现有无机热电材料所存在的问题,本实施方式提供了一种基于苯并二噻吩-二噻吩苯并噻二唑d-a型共轭聚合物有机热电材料;所述有机热电材料中,苯并二噻吩上的噻吩作为给电子(doner,d)基团,苯并噻二唑作为受电子(acceptor,a)基团,所述苯并二噻吩的苯环上可引入不同的侧链基团从而改变有机热电材料的共轭程度。所述有机热电材料具有较低的homo能级,且成膜性能较佳,在450-600nm波长范围内具有较强的吸收;进一步地,所述有机热电材料可通过stille偶联反应进行溶液加工,利用所述有机热电材料制备的薄膜经过无水三氯化铁掺杂后,得到的d-a型共轭聚合物有机热电薄膜材料具有优异的热电性能。

更进一步地,所述d-a型共轭聚合物有机热电薄膜材料除了具有较高的seebeck系数和热电性能之外,还具有较好的柔韧性,使得该有机热电薄膜材料有望应用于柔性可穿戴热电设备中;并且本发明提供的d-a型共轭聚合物有机热电薄膜材料制备方法简单易实现,且成本低廉。

在所述步骤s10中,在惰性气氛下,以三(二亚苄基丙酮)二钯为催化剂,三(邻甲苯基)磷为配体,将单体i和单体ii加入到氯苯溶剂中进行stille偶联聚合反应;其中,所述单体i的分子结构式为单体i中的x为氧原子、噻吩和噻吩并噻吩中的一种;所述单体ii的分子结构式为

为节约成本并保证最大生产效率,在进行stille偶联聚合反应时,优选所述单体i和单体ii的摩尔比为1:1。

进一步地,所述stille偶联聚合反应的温度为100-120℃,时间为70-75h。当温度高于120℃时,反应速度过快不易控制,当温度低于100℃时,则催化剂活性较低,反应效率较低;因此,本发明优选反应温度为110℃,反应时间为72h,在该条件下,反应既可控又高效。

优选地,所述惰性气氛为氮气、氩气、氖气和氦气中的一种。

在所述步骤s20中,将反应后溶液加入到甲醇溶剂中并进行离心处理,去除上清液后,得到聚合物粗产物。

具体地,将所述步骤s10中反应后的溶液逐滴滴入甲醇溶剂中析出聚合物,将析出聚合物的甲醇溶液放入离心管中,优选离心速度为2500-3500r/min,离心时间为5-15min;离心后将上层清液倒掉后,获得聚合物粗产物,将所述聚合物粗产物放入40℃的真空干燥箱进行真空干燥12h,备用。

进一步地,在所述步骤s30中,将干燥后的聚合物粗产物放入索氏提取器中,分别以甲醇、丙酮和正己烷作为溶剂进行索氏提取12h,除去聚合物粗产物中的低聚物和未反应的单体,得到提纯后的d-a型共轭聚合物有机热电材料其中,n为40至70之间的整数;将所述d-a型共轭聚合物有机热电材料放入40℃的真空干燥箱中进行真空干燥12h,备用。

更进一步地,在所述步骤s40中,先将干燥后的d-a型共轭聚合物有机热电材料溶解在氯苯溶剂中,优选所述d-a型共轭聚合物有机热电材料溶解在氯苯溶剂中的浓度为15mg/ml;然后将得到的溶液逐滴滴加到15mm*15mm的玻璃片上,待氯苯溶剂挥发后得到一层致密的d-a型共轭聚合物有机热电薄膜材料。

优选地,所述步骤s40之后还包括:

s50、将所述d-a型共轭聚合物有机热电薄膜材料浸泡在浓度为0.1mol/l的无水三氯化铁的硝基甲烷溶液中进行掺杂处理,掺杂时间为8-15min,得到掺杂的d-a型共轭聚合物有机热电薄膜材料;经过无水三氯化铁掺杂的d-a型共轭聚合物有机热电薄膜材料,其热电性能得到了较大的提升。

基于上述方法,本发明还提供了一种d-a型共轭聚合物有机热电薄膜材料,其中,采用上述任意一种制备方法制备得到,所述d-a型共轭聚合物有机热电薄膜材料的化学结构式为:其中,x为氧原子、噻吩和噻吩并噻吩中的一种。

下面通过具体实施例对本发明一种d-a型共轭聚合物有机热电薄膜材料的制备方法及其性能测试做进一步的解释说明:

实施例1

聚合物pbdtdtbtf-1的合成:

在25ml的两口烧瓶中,依次加入单体m1(100mg,0.1295mmol),单体ⅱ(137mg,0.1295mmol),三(二亚苄基丙酮)二钯(6mg,0.0065mmol),三(邻甲苯基)磷(10mg,0.0324mmol),氯苯3.5ml,在氮气氛围保护下,控温110℃反应72h,其反应式如下所示:

待反应自然冷却后,将反应液滴加到甲醇中沉降析出聚合物,将包含甲醇和聚合物的溶液在3000r/min中的离心机中离心10min,将上层清液倒掉,即可得到聚合物粗产品,将该聚合物粗产品在真空干燥箱中真空干燥12h,将干燥后的聚合物粗产品放入索氏提取器中,分别以甲醇、丙酮、正己烷作为溶剂进行索式提取12h,除去粗产物的低聚物和未反应的单体,然后将提纯后获得的最终产物放入40℃的真空干燥箱进行真空干燥12h,获得深红色固体粉末(pbdtdtbtf-1)143.3mg,产率82.4%。

实施例2

聚合物pbdtdtbtf-1薄膜的制备及掺杂方法:

将获得的聚合物pbdtdtbtf-1以15mg/ml的浓度溶于氯苯中,将该溶液用滴管逐滴滴到15mm*15mm的玻璃片上,待溶剂挥发后,即可获得附着在玻璃片上的聚合物薄膜。配置浓度为0.1mol/l的无水三氯化铁的硝基甲烷溶液,将获得的聚合物薄膜放入该溶液中进行浸泡掺杂处理10min,取出聚合物薄膜用硝基己烷溶液冲洗即可获得可用于热电测试的有机热电薄膜材料。

实施例3

聚合物pbdtdtbtf-1以及聚合物pbdtdtbtf-1薄膜材料的性能表征和热电性能测试:

1、通过waterse2695凝胶渗透色谱仪对聚合物pbdtdtbtf-1的分子量及分子量分布进行测试,测得的gpc曲线如图1所示,聚合物pbdtdtbtf-1的数均分子量为56986,重均分子量为109930,分子量分布指数为1.93。

2、通过thermoevolution220紫外-可见吸收光谱仪分别对溶解在氯苯溶剂中的聚合物pbdtdtbtf-1以及聚合物pbdtdtbtf-1薄膜材料进行测定:pbdtdtbtf-1在氯苯溶液中的紫外-可见吸收光谱如图2所示,其最大吸收峰对应的波长为566nm;聚合物pbdtdtbtf-1薄膜材料的紫外吸收光谱如图3所示,与溶液的吸收光谱相比,光谱图大致相同,但吸收峰均有不同程度的红移,这主要是应为固体薄膜汇总分子堆积所致。其最大吸收峰对应的波长为584nm,由起峰位置计算光学带隙为1.80ev。

3、通过chi660e电化学工作站对聚合物pbdtdtbtf-1薄膜材料进行测定,测得的聚合物pbdtdtbtf-1薄膜材料中的循环伏安特性曲线如图4所示,呈现了可逆的氧化峰,由此计算出该材料的homo能级为-5.47ev。

4、通过brukerd8advancex射线衍射仪对聚合物pbdtdtbtf-1薄膜材料和掺杂无水三氯化铁的pbdtdtbtf-1薄膜材料进行测定:pbdtdtbtf-1和掺杂后的pbdtdtbtf-1薄膜的xrd谱图如图5所示,在2θ角为20°~25°之间出现了典型的π-π堆积的特征吸收峰,说明该聚合物堆积较紧密,掺杂后衍射峰峰向2θ角度大的方向移动,根据布拉格方程可以说明掺杂后的薄膜堆积更加紧密。

5、通过日立s-4700场发射扫描电镜对聚合物pbdtdtbtf-1薄膜材料的截面进行扫描,结果如图6所示。

6、通过嘉仪通mrs-3薄膜热电测试系统对掺杂后的聚合物pbdtdtbtf-1薄膜材料进行热电性能测试:掺杂后的聚合物pbdtdtbtf-1薄膜材料的塞贝克系数、电导率、功率因子随温度变化的曲线分别如图7、图8和图9所示。该聚合物薄膜材料具有较高的赛贝克系数,赛贝克系数整体随温度的增加而增加,电导率随温度的升高而降低,功率因子由赛贝克系数和电导率决定,整体趋势随温度的升高先升高后降低。

综上所述,与传统的无机热电材料相比,本发明提供的d-a型共轭聚合物有机热电薄膜材料易溶于常用的四氢呋喃、二氯甲烷、三氯甲烷、氯苯等有机溶剂中,因此具有较好的溶液可加工性。此外,该类d-a型共轭聚合物有机热电薄膜材料还具有较高的seebeck系数和热电性能,同时也具有较好的柔韧性,使得该有机热电薄膜材料有望应用于柔性可穿戴热电设备中;并且本发明提供的d-a型共轭聚合物有机热电薄膜材料制备方法简单易实现,且成本低廉。

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1