一种热粘合加固纳米纤维组装的3D多孔交联复合气凝胶制备方法与流程

文档序号:16101236发布日期:2018-11-28 00:07阅读:241来源:国知局
一种热粘合加固纳米纤维组装的3D多孔交联复合气凝胶制备方法与流程

本发明属于纳米纤维复合气凝胶领域,具体涉及一种热粘合加固纳米纤维组装的3D多孔交联复合气凝胶制备方法。

技术背景

静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,同时制得的纳米纤维具有比表面积大、长径比大、力学性能好等优点。静电纺纳米纤维在环境治理、安全防护、电子信息、组织工程等领域有着广阔的应用。随着应用研究的不断深入,构建结构稳定和性能优异的三维微纳米纤维材料已成为当前静电纺纤维应用性能提升的关键。

纳米纤维气凝胶是一种超低密度、高孔隙率的3D多孔材料。刘天西等人在公开号CN105161312A和CN105845455A专利中运用了均质分散和冷冻成型-干燥的纳米纤维复合气凝胶技术。钟鹭斌等人在公开号CN104674383A的专利中制备冷冻成型-干燥的有机纳米纤维/无机材料气凝胶,并经过预氧化、碳化和活化,得到碳纳米纤维气凝胶。由此均质分散和冷冻成型-干燥技术是制备纳米纤维气凝胶的普适性技术,关键在于如何利用简单的方法在纳米纤维之间形成粘结点,从而形成3D多孔交联网络结构。

因此本发明创新性以聚丙烯腈(PAN)和热塑性高分子共混静电纺丝,与二氧化硅(SiO2)纳米纤维在非溶剂中均质分散。分散体经过普适的冷冻成型-干燥技术制得气凝胶,然后简单热固定型技术即可制备高回弹性多孔气凝胶。该气凝胶材料具有高比表面积、多孔结构、高孔隙率、超疏水性、超轻、超回复弹性、超低热传导系数和可重复利用的优异特性,在能源、环境、医疗卫生、航空航天等领域具有广阔的应用前景。



技术实现要素:

本发明的目的在于提供一种热粘合加固纳米纤维组装的3D多孔交联复合气凝胶制备方法,制备得到的复合气凝胶具有高比表面积、多孔结构、高孔隙率、超疏水性、超轻、超回复弹性、超低热传导系数和可重复利用以及结构稳定、性能优异。

本发明利用纳米纤维分散体冷冻成型-干燥技术制得气凝胶,然后简单热固定型技术即可制备高回弹性多孔气凝胶。纳米纤维表面相对低熔点的热塑性高分子热熔后冷却作为原位粘结点,纳米纤维形成各向同性分布的3D多孔交联气凝胶。

本发明提供的一种热粘合加固纳米纤维组装的3D多孔交联复合气凝胶制备方法,具体步骤如下:

(1)将5~10%的聚丙烯腈(PAN)和不同含量的热塑性高分子混合,在溶剂中完全溶解,得到PAN(X%热塑性高分子)纺丝液;

(2)将步骤(1)得到的PAN(X%热塑性高分子)纺丝液进行静电纺丝,得到纳米纤维膜;

(3)配制聚乙烯醇(PVA)的水溶液和以有机硅源为前体的二氧化硅溶胶,将两者以一定质量比混合,得到中间混合物;

(4)将步骤(3)得到的中间混合物静电纺制备PVA/SiO2纳米纤维,搅拌4~8h,进行静电纺丝,煅烧得到SiO2纳米纤维作为刚性支撑单元,得到纳米纤维膜;

(5)将步骤(2)和步骤(4)得到的纳米纤维膜在水和叔丁醇的混合液中进行匀浆处理,得到不同浓度的分散液;

(6)将步骤(5)得到的分散液放入不同形状的模具中,低温冷冻定型后经冷冻干燥、热粘合加固,制备得到3D多孔交联复合气凝胶。

所述的步骤(1)中混入的热塑性高分子的不同含量为0~25%质量分数,即占溶质的质量分数,记为PAN(X%热塑性高分子)纺丝液;热塑性高分子为热塑性聚氨酯(TPU)、聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)、聚乙烯(PE)、聚氯乙烯(PVC)、聚碳酸酯(PC)、聚乳酸(PLA)高分子中的至少一种;纺丝溶剂采用N,N-二甲基甲酰胺(DMF)、三氯甲烷、二氯甲烷、二甲基亚砜(DMSO)有机溶剂中的至少一种;纺丝液中PAN和热塑性高分子占5~15%。

所述的步骤(3)中PVA的水溶液质量分数为5%~10%;二氧化硅溶胶以正硅酸四乙酯(TEOS)、四甲氧基硅烷(TMOS)、甲基三乙氧基硅烷(MTES)中的一种为前体,以磷酸、盐酸、硫酸中的一种为催化剂,二氧化硅溶胶中各组份摩尔比为有机硅源:H2O:H+=1:3~11:0.01~0.05;室温下凝胶时间为4~48h;PVA的水溶液和二氧化硅溶胶的混合质量比为1:3~1。

所述的步骤(2)和步骤(4)中静电纺丝工艺参数为:纺丝速度为0.5~3mL/h,电压为15~25kV,接收距离为10~25cm,滚筒转速为50~250rpm;(4)中所述的PVA/SiO2纳米纤维在空气条件下煅烧,以1~10℃/min的升温速率从室温升到600~1000℃即可得到SiO2纳米纤维。

所述的步骤(5)中纳米纤维膜剪成1*1cm2、2*2cm2的小块;水和叔丁醇的混合液质量比例为4:1;分散液的不同浓度为0.5~15mg/cm3;匀浆处理采用高速均质分散机,转速为5000~15000rpm,时间为5~30min。

所述的步骤(6)中低温冷冻定型为液氮冷冻或冰箱冷冻方法;冷冻干燥时间为10~50h;热粘合加固温度为60~250℃,时间为5~60min。

所述的方法制备得到的为3D多孔交联纳米纤维气凝胶。

所述的方法制备得到的3D多孔交联纳米纤维气凝胶具有高比表面积、多孔结构、高孔隙率、超疏水性、超轻、超回复弹性、可重复利用的优异特性。

本发明制备的3D多孔交联纳米纤维复合气凝胶具有高比表面积、多孔结构、高孔隙率、超疏水性、超轻、超回复弹性、超低热传导系数和可重复利用的优异特性,在能源、环境、医疗卫生、航空航天等领域具有广阔的应用前景。



背景技术:
相比,本发明具有的有益效果是:

(1)本发明利用聚丙烯腈(PAN)共混低熔点的热塑性高分子通过静电纺丝、加入SiO2纳米纤维均质分散、冷冻成型-干燥、热固定型即可得到高回弹性的3D多孔交联气凝胶。该气凝胶无需使用交联剂,广泛适用于共混多种热塑性高分子,只需要高于其熔点温度就可以实现纳米纤维交联。纳米纤维表面相对低熔点的热塑性高分子热熔后冷却作为原位粘结点形成各向同性分布的3D网络交联结构。

(2)该气凝胶中PAN纳米纤维作为回弹单元和SiO2纳米纤维作为刚性支撑单元,简单高效热加固法粘结纳米纤维,重构三维网络结构。,通过简单控制初始分散体中纳米纤维的含量就可以得到各种密度的3D多孔交联气凝胶,具有高比表面积、高孔隙率、超疏水性、超轻、超回复弹性、超低热传导系数和可重复利用的优异特性。

附图说明

图1为3D多孔交联纳米纤维复合气凝胶的制备过程示意图。

图2为实施例1制备的3D多孔交联纳米纤维复合气凝胶的形貌电镜图和压缩回弹性能图。

图3为实施例1制备的煅烧PVA/SiO2纳米纤维的热失重图。

图4为实施例1的方法中PAN(10%TPU)纳米纤维以及掺入25%SiO2纳米纤维后分散体的红外吸收光谱图。

图5为实施例1制备流程的真实效果图。

具体实施案例

下面结合具体实例,进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

(1)将10%的聚丙烯腈(PAN)和占溶质质量分数为10%的热塑性聚氨酯(TPU)混合,N,N-二甲基甲酰胺(DMF)为溶剂,PAN和热塑性高分子总量占溶液10%,完全溶解,得到PAN(10%热塑性高分子)纺丝液;

(2)将步骤(1)得到的PAN(10%热塑性高分子)纺丝液进行静电纺丝,纺丝速度为1mL/h,电压为17kV,接收距离为15cm,滚筒转速为200rpm,得到纳米纤维膜;

(3)配制质量分数为7%的聚乙烯醇(PVA)的水溶液和以正硅酸四乙酯(TEOS)为前体的各组份摩尔比为有机硅源:H2O:H+=1:11:0.01的二氧化硅溶胶,以磷酸为催化剂,室温下凝胶时间为24h,将两者以PVA的水溶液和二氧化硅溶胶1:1的混合质量比混合,得到中间混合物;

(4)将步骤(3)得到的中间混合物静电纺制备PVA/SiO2纳米纤维,搅拌4h,纺丝速度为1mL/h,电压为21kV,接收距离为18cm,滚筒转速为50rpm,进行静电纺丝,以5℃/min的升温速率从室温升到800℃在空气条件下煅烧得到SiO2纳米纤维作为刚性支撑单元,得到纳米纤维膜;

(5)将步骤(2)和步骤(4)得到的纳米纤维膜剪成1*1cm2小块,在水和叔丁醇质量比例为4:1的混合液中采用高速均质分散机转速为13000rpm、时间为20min进行匀浆处理,得到浓度梯度为0.5、2.5、5、7.5、10、12.5、15mg/cm3的分散液;

(6)将步骤(5)得到的分散液放入不同形状的模具中,液氮冷冻或冰箱冷冻定型后经48h的冷冻干燥、温度为200℃、时间为20min的热粘合加固,制备得到3D多孔交联复合气凝胶。

实施例2

(1)将5%的聚丙烯腈(PAN)和占溶质质量分数为5%的聚己内酯(PCL)、聚碳酸酯(PC)、聚乳酸(PLA)混合,二甲基亚砜(DMSO)为溶剂,PAN和热塑性高分子总量占溶液5%,完全溶解,得到PAN(5%热塑性高分子)纺丝液;

(2)将步骤(1)得到的PAN(5%热塑性高分子)纺丝液进行静电纺丝,纺丝速度为0.5mL/h,电压为15kV,接收距离为25cm,滚筒转速为50rpm,得到纳米纤维膜;

(3)配制质量分数为10%的聚乙烯醇(PVA)的水溶液和以四甲氧基硅烷(TMOS)为前体的各组份摩尔比为有机硅源:H2O:H+=1:3:0.04的二氧化硅溶胶,以盐酸为催化剂,室温下凝胶时间为4h,将两者以PVA的水溶液和二氧化硅溶胶1:3的混合质量比混合,得到中间混合物;

(4)将步骤(3)得到的中间混合物静电纺制备PVA/SiO2纳米纤维,搅拌8h,纺丝速度为0.5mL/h,电压为20kV,接收距离为15cm,滚筒转速为250rpm,进行静电纺丝,以1℃/min的升温速率从室温升到650℃在空气条件下煅烧得到SiO2纳米纤维作为刚性支撑单元,得到纳米纤维膜;

(5)将步骤(2)和步骤(4)得到的纳米纤维膜剪成2*2cm2小块,在水和叔丁醇质量比例为4:1的混合液中采用高速均质分散机转速为5000rpm、时间为30min进行匀浆处理,得到浓度为2.5、5、7.5、10mg/cm3的分散液;

(6)将步骤(5)得到的分散液放入不同形状的模具中,液氮冷冻或冰箱冷冻定型后经24h的冷冻干燥、温度为120℃、时间为5min的热粘合加固,制备得到3D多孔交联复合气凝胶。

实施例3

(1)将7%的聚丙烯腈(PAN)和占溶质质量分数为25%的聚丁二酸丁二醇酯(PBS)、聚乙烯(PE)、聚氯乙烯(PVC)混合,三氯甲烷为溶剂,PAN和热塑性高分子总量占溶液15%,完全溶解,得到PAN(25%热塑性高分子)纺丝液;

(2)将步骤(1)得到的PAN(25%热塑性高分子)纺丝液进行静电纺丝,纺丝速度为3mL/h,电压为25kV,接收距离为18cm,滚筒转速为100rpm,得到纳米纤维膜;

(3)配制质量分数为5%的聚乙烯醇(PVA)的水溶液和以甲基三乙氧基硅烷(MTES)为前体的各组份摩尔比为有机硅源:H2O:H+=1:8:0.02的二氧化硅溶胶,以硫酸为催化剂,室温下凝胶时间为48h,将两者以PVA的水溶液和二氧化硅溶胶1:2的混合质量比混合,得到中间混合物;

(4)将步骤(3)得到的中间混合物静电纺制备PVA/SiO2纳米纤维,搅拌6h,纺丝速度为2mL/h,电压为25kV,接收距离为25cm,滚筒转速为150rpm,进行静电纺丝,以10℃/min的升温速率从室温升到1000℃在空气条件下煅烧得到SiO2纳米纤维作为刚性支撑单元,得到纳米纤维膜;

(5)将步骤(2)和步骤(4)得到的纳米纤维膜剪成1*1cm2小块,在水和叔丁醇质量比例为4:1的混合液中采用高速均质分散机转速为15000rpm、时间为5min进行匀浆处理,得到浓度为2.5、5、7.5、10mg/cm3的分散液;

(6)将步骤(5)得到的分散液放入不同形状的模具中,液氮冷冻或冰箱冷冻定型后经24h的冷冻干燥、温度为120℃、时间为5min的热粘合加固,制备得到3D多孔交联复合气凝胶。

实施例4

(1)将10%的聚丙烯腈(PAN)和占溶质质量分数为0%的聚氯乙烯(PVC)、聚碳酸酯(PC)、混合,二氯甲烷为溶剂,PAN和热塑性高分子总量占溶液10%,完全溶解,得到PAN(0%热塑性高分子)纺丝液;

(2)将步骤(1)得到的PAN(0%热塑性高分子)纺丝液进行静电纺丝,纺丝速度为2mL/h,电压为20kV,接收距离为10cm,滚筒转速为250rpm,得到纳米纤维膜;

(3)配制质量分数为8%的聚乙烯醇(PVA)的水溶液和以以正硅酸四乙酯(TEOS)为前体的各组份摩尔比为有机硅源:H2O:H+=1:5:0.05的二氧化硅溶胶,以盐酸为催化剂,室温下凝胶时间为12h,将两者以PVA的水溶液和二氧化硅溶胶1:1的混合质量比混合,得到中间混合物;

(4)将步骤(3)得到的中间混合物静电纺制备PVA/SiO2纳米纤维,搅拌4h,纺丝速度为3mL/h,电压为15kV,接收距离为10cm,滚筒转速为200rpm,进行静电纺丝,以8℃/min的升温速率从室温升到600℃在空气条件下煅烧得到SiO2纳米纤维作为刚性支撑单元,得到纳米纤维膜;

(5)将步骤(2)和步骤(4)得到的纳米纤维膜剪成2*2cm2的小块,在水和叔丁醇质量比例为4:1的混合液中采用高速均质分散机转速为10000rpm、时间为10min进行匀浆处理,得到浓度为2.5、5、7.5、10mg/cm3的分散液;

(6)将步骤(5)得到的分散液放入不同形状的模具中,液氮冷冻或冰箱冷冻定型后经50h的冷冻干燥、温度为60℃、时间为40min的热粘合加固,制备得到3D多孔交联复合气凝胶。

使用扫描电子显微镜(SEM)、热失重分析仪(TGA)、傅里叶变换红外光谱仪(FTIR)来表征本发明所获得的3D多孔交联纳米纤维复合气凝胶的结构形貌;使用万能试验机来表征本发明所获得的复合气凝胶的回弹性能,其结果如下:

(1)SEM表明获得的3D多孔交联纳米纤维复合气凝胶具有稳定的交联网络结构,同时具有很低的密度(0.5~15mg/cm3),且具有良好的压缩回弹性能,参见附图2。

(2)TGA的测试结果表明:煅烧PVA/SiO2纳米纤维得到了纯的SiO2纳米纤维,残余质量即实际得到的SiO2纳米纤维质量,略小于理论上PVA/SiO2纳米纤维中SiO2的含量,这可能由于水溶剂的残留,参见附图3。

(3)FTIR的测试结果表明:热塑性高分子之一热塑性聚氨酯(TPU)与PAN的共混纳米纤维,以及SiO2纳米纤维均匀的掺入到气凝胶中,参见附图4。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1