一种高压电缆用半导电屏蔽料的制作方法

文档序号:22130065发布日期:2020-09-08 12:44阅读:143来源:国知局
一种高压电缆用半导电屏蔽料的制作方法
本发明涉及一种半导电屏蔽料的材料,具体讲涉及一种高压电缆用半导电屏蔽料。
背景技术
:聚乙烯绝缘电缆具有体积小,重量轻,工作温度高,维护成本低以及环保的优点,因此在生产运输,安装回收等方面相比于其他绝缘材料电缆更具有优势。现有的聚乙烯电缆只能在低压配电系统中用于直流电能的传输,却无法直接应用在高压直流系统中,主要原因在于聚乙烯绝缘电缆会在高压直流电场中积累大量的空间电荷,从而引起绝缘系统中电场分布的严重畸变,如果局部电场强度远高于电缆的运行强度,会导致电缆材料加速老化甚至在电场畸变严重区域直接击穿。添加剂和交联副产物在直流电场下电离和极化均会造成聚乙烯绝缘电缆中的空间电荷现象,空间电荷的聚集会严重威胁高压直流电缆的长期运行和最终寿命,因此需要抑制高压直流电缆中空间电荷的聚集。6,924,435b2号美国专利,以及cn101585943、cn105131419号中国专利专利中,分别采用了添加剂,空间电荷抑制剂或其他纳米掺杂方法来改善半导电屏蔽料中的空间电荷现象。然而,在半导电屏蔽料中加入添加剂不仅生产复杂和成本高昂,同时也可能会在半导电屏蔽层引入新的极性分子源,进而扩散至电缆绝缘层,形成电荷聚集,威胁高压直流电缆的安全稳定运行。技术实现要素:针对现有技术的不足,本发明提出一种抑制高压直流电缆中空间电荷聚集的半导电屏蔽料,本发明是采用以下技术方案实现的:一种高压电缆用半导电屏蔽料,所述半导电屏蔽料按照质量分数计包括:非极性基料60-80%、炭黑10-40%、交联剂1.5-2%和抗氧化剂0.1-0.5%。进一步的,所述半导电屏蔽料包括:非极性基料65-75%、炭黑10-35%、交联剂1.8-2%和抗氧化剂0.1-0.2%。进一步的,所述非极性基料为低密度聚乙烯或质量分数≥10%的低密度聚乙烯和超低密度聚乙烯的混合物,其熔体流动速率为0.15-0.25g/min,密度为900-910g/m3。进一步的,所述炭黑为粒径20-40nm,比表面积50-65m2/g、灰烬和硫化物含量≤100ppm的超净导电炭黑。进一步的,所述交联剂为过氧化物类化合物,所述抗氧化剂为硫代双酚类化合物。进一步的,所述交联剂为过氧化二异丙苯,所述抗氧化剂为双硫醚。进一步的,所述半导电屏蔽料的制备步骤如下:(1)将基料与抗氧化剂升温至140℃融化并混合;(2)在步骤(1)所得产物中掺入炭黑搅拌均匀;(3)将步骤(2)所得产物降温至115℃后,掺入交联剂搅拌均匀;(4)冷却至室温得半导电屏蔽料。与最接近的现有技术比,本发明提供的技术方案具有以下有益效果:(1)本发明提出的抑制高压直流电缆中空间电荷聚集的半导电屏蔽料,通过引入不含杂质和极性分子的材料对传统绝缘料进行改性,并配合电缆主绝缘材料,随电屏蔽料厚度增加,电荷密度波动在60c/m3范围,电荷分布更加均匀,有效抑制了空间电荷在直流电场下产生和迁移。(2)本发明提出的半导电屏蔽料电场的增强量低,有效抑制了空间电荷对电场分布的影响,在混入超低密度聚乙烯后,电场增强量均低于3%。(3)本发明提出的半导电屏蔽料中电缆的绝缘层和半导电屏蔽层均采用同种超净的聚乙烯材料,其主要热性能接近,有效保证了半导屏蔽层与绝缘层的热粘合性良好,且杂质含量较低浓度相似,限制了杂质从半导电屏蔽层中扩散进入绝缘层。(4)本发明提出的半导电屏蔽料选用超净导电炭黑,使半导电屏蔽料中的杂质和外族元素量更低,防止了杂质扩散进入绝缘系统中,大大降低了空间电荷积聚的风险。附图说明图1:室温下,本发明提供的实施例在强度40kv/mm电场中1小时的空间电荷分布结果;图2:室温下,本发明提供的实施例在强度40kv/mm电场中1小时的电场分布结果;图3:移除外加电压后瞬时残留空间电荷分布结果。具体实施方式下面结合附图对本发明提供的技术方案作清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分,而不是全部。测试方法:在120℃下用热硫机将绝缘料和半导电屏蔽料分别熔化预压制为薄膜状样品,冷却后,将绝缘层薄膜紧密夹于两层半导电屏蔽层薄膜之间,模拟实际高压电缆中的绝缘系统结构,将样品放入热硫机升温至样品融化后,迅速升温至180-200℃进行交联反应。由于三层材料同时熔化并交联,半导电屏蔽层与绝缘层之间完全热粘合在一起,不会出现气泡,分裂或其他缺陷,当交联反应完成后,将样品逐渐冷却至室温,在真空和高温环境内进行除气,尽量去除交联副产物。样品的空间电荷特性采用电声脉冲法(pea)进行测量和评估。该方法的测量系统,测量原理和测量流程可以参见iec标准iec62758:2012基于脉冲电声(pea)测量原理的空间电荷测量设备的校准。测量条件为在室温(22℃)下,施加40kv/mm的高压直流电场,持续施加电场1小时后测量其空间电荷分布。用电场增强量(fe)来描述绝缘系统中因空间电荷积聚导致的局部电场的升高比例,可由以下公式进行计算:其中,emax是绝缘系统中的电场强度的最大值;ea是施加在样品上平均电场强度(40kv/mm)。基于高压直流电缆的安全稳定运行的要求,fe越小,说明电缆绝缘中的电场分布越均匀,空间电荷的影响越小。实施例1在140℃下将质量百分数为73%的低密度聚乙烯半导电屏蔽料基料和1.8%抗氧化剂用热熔搅拌机均匀混合,在所得产物中掺入25%的超净炭黑搅拌均匀,逐渐降温至115℃后掺入0.2%交联剂搅拌均匀,最后冷却至室温得半导电屏蔽料。实施例2在140℃下将质量百分数为63%的低密度聚乙烯半导电屏蔽料基料和1.8%抗氧化剂用热熔搅拌机均匀混合,在所得产物中掺入35%的超净炭黑搅拌均匀,逐渐降温至115℃后掺入0.2%交联剂搅拌均匀,最后冷却至室温得半导电屏蔽料。实施例3在140℃下将质量百分数为32%的低密度聚乙烯和31%的超低密度聚乙烯混合物基料和1.8%抗氧化剂用热熔搅拌机均匀混合,在所得产物中掺入35%的超净炭黑搅拌均匀,逐渐降温至115℃后掺入0.2%交联剂搅拌均匀,最后冷却至室温得半导电屏蔽料。实施例4在140℃下将质量百分数为19%的低密度聚乙烯和44%的超低密度聚乙烯混合物基料和1.8%抗氧化剂用热熔搅拌机均匀混合,在所得产物中掺入35%的超净炭黑搅拌均匀,逐渐降温至115℃后掺入0.2%交联剂搅拌均匀,最后冷却至室温得半导电屏蔽料。表1.各实施例配比及电场升高比例(质量%)实施例1实施例2实施例3实施例4样品a样品b低密度聚乙烯73633219--超低密度聚乙烯--3144--炭黑25353535--交联剂1.81.81.81.8--抗氧化剂0.20.20.20.2--fe5.86.32.52.48.311.9如表1所示,实施例中电场升高比例最小的是实施例3、4,且远小于对比样品,表明采用本发明的半导电屏蔽料,在与绝缘料良好配合后,电场的增强量均低于样品,在混入vldpe的实施例3和实施例4中,电场增强量均低于3%,有效抑制了空间电荷的聚集现象,空间电荷的影响更小。如图1所示,通过对比实施例与样品a、b的空间电荷结果发现,样品a、b在靠近阴极处的区域,聚积了较多的正电荷,而实施例均未在该区域出现明显正电荷的积聚。这表明本发明的半导电屏蔽料与绝缘料的配合良好,有效减少了极性分子、交联副产品和杂质在半导电屏蔽层和绝缘层中的总量,抑制和削弱了扩散和迁移现象,对异性空间电荷聚积的抑制效果显著。如图2所示,当加压1小时后,实施例和参考样品中的最大电场位置明显是不同的,在参考样品a和b中,最大电场主要集中在电极附近,尤其是阴极;然而在实施例中,其电场分布更加均匀,最大电场主要出现在绝缘体中部区域,如图3所示,去掉外施的高压直流电场5秒内,实施例中的残余空间电荷分布远低于样品a、b,这表明空间电荷对实施例影响更小,绝缘系统运行更加稳定,可靠。以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均在本发明待批权利要求保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1