一种生物基可降解发泡材料及其制备方法与流程

文档序号:19075776发布日期:2019-11-08 21:27阅读:1448来源:国知局

本发明属于包装技术领域,具体涉及一种生物基可降解发泡材料及其制备方法。



背景技术:

传统发泡材料是指以塑料、橡胶、弹性体等热固性或热塑性高分子材料为骨架形成的内部具有无数气泡的微孔材料,如聚氨酯泡沫、聚苯乙烯泡沫、聚烯烃泡沫、聚氯乙烯泡沫、酚醛泡沫、环氧化物树脂泡沫、丁腈橡胶泡沫、热塑性弹性体泡沫等。传统发泡材料作为餐盒、减震材料等快速消耗品被广泛应用,但降解性差,进入土壤中,能保持数十年甚至数百年,严重污染环境,同时,塑料泡沫热稳定性差,高温条件下,易挥发出有毒气体,危害人体健康。

鉴于以上因素,开发环境友好型、可生物降解的新型发泡材料日益成为研究热点和研究方向,如申请号为cn201410329313.1的专利,公开一种可降解阻燃保温超轻发泡材料的制备方法;如申请号为cn201711422368.7的专利,公开一种可降解pbat类发泡材料及其制备方法;如申请号为cn201711424204.8的专利,公开一种可降解pla发泡材料及其制备方法;如申请号为cn201711492540.6的专利,公开一种高弹性耐热可降解石墨烯-聚丁二酸丁二醇酯复合发泡材料的制备方法;如申请号为cn201610397031.4的专利,公开一种纤维素基生物可降解型发泡材料的制备方法;如申请号为cn201710401709.6的专利,公开一种秸秆纤维可降解发泡材料的制备方法。其中,纤维素类发泡材料以农作物秸秆、粮食下脚料、锯木渣等废弃生物质为原料生产发泡材料,变废为宝,利用微生物完成降解过程,由于植物纤维的发泡难度大,且纯植物纤维发泡材料的耐水性和耐候性差,实际生产中,可通过掺杂淀粉基塑料、聚乳酸等聚合物进行改善,但纤维素与高分子塑料的相容性差,使界面的粘结力较低,直接混制易出现发泡材料断裂的现象。



技术实现要素:

针对现有技术的不足之处,本发明的目的在于提供一种生物基可降解发泡材料及其制备方法。

本发明的技术方案概述如下:

一种生物基可降解发泡材料,包括以下重量份原料:

优选的是,所述发泡调节剂为丙烯酸酯类发泡调节剂。

优选的是,所述增容剂包括马来酸酐接枝聚丙烯、马来酸酐接枝聚乙烯、马来酸酐改性聚丁二烯的一种或多种。

优选的是,所述增塑剂包括环氧大豆油、柠檬酸三丁酯、乙酰柠檬酸三丁酯、麦芽糖醇中的一种或多种。

优选的是,所述膨胀型阻燃剂包括以下重量百分比的组分:聚磷酸铵25-30%、三聚氰胺10-15%、碱式碳酸铜5-10%、镁铝水滑石45-60%。

优选的是,所述硅烷偶联剂包括γ-氨丙基三乙氧基硅烷、γ-氨丙基甲基二甲氧基硅烷、n-(β-氨乙基)-γ-氨丙基三甲氧基硅烷中的一种或多种。

一种生物基可降解发泡材料的制备方法,包括以下步骤:

s1:制备改性玉米秸秆/松木渣:

(1)碱化处理:将原玉米秸秆/松木渣粉碎至30-40目,加入0.1-0.5mol/l的氢氧化钠溶液中,在超声波辅助下,浸渍6-12h,使植物纤维素充分润胀,再进行过滤;

(2)蒸汽爆破处理:中和碱化后玉米秸秆/松木渣后,与0.1-0.15倍质量的尿素混合,在2.8-4.2mpa的蒸汽压力下进行爆破,保压时间为150-300s;

(3)乙酰化处理:按1:0.5:0.3:0.01的质量比将蒸汽爆破后玉米秸秆/松木渣与乙酸乙烯酯、乙酸酐、碳酸钾混合均匀后,60-80℃下搅拌2-4h,进行乙酰化反应,得改性玉米秸秆/松木渣;

s2:制备淀粉改性聚氨酯:

(1)预聚:将聚醚二元醇真空脱水后,与异佛尔酮二异氰酸酯、催化剂混合,在80-85℃的氮气环境下,反应3-6h,得聚氨酯预聚体;

(2)扩链:将聚氨酯预聚体与淀粉、扩链剂混合均匀,在65-75℃的氮气环境下,反应4-8h,得淀粉改性聚氨酯;

s3:制备发泡材料:按重量份将改性玉米秸秆、改性松木渣、淀粉改性聚氨酯、聚乳酸、聚乙烯蜡、纳米硼纤维、碳酸氢钙、偶氮二甲酰胺、发泡调节剂、增容剂、增塑剂、膨胀型阻燃剂、硅烷偶联剂混合均匀,于4-8mpa压力下,挤压成生胚后,在100-120℃氮气环境下,反应1-3h,得所述可降解发泡材料。

优选的是,所述聚醚二元醇、异佛尔酮二异氰酸酯、催化剂、淀粉、扩链剂的质量比为1:0.5:0.01:0.2:0.01。

本发明的有益效果:

(1)本发明以改性玉米秸秆和改性松木渣为基础原料,来源广,成本低廉,资源化利用废弃生物质,变废为宝,并以淀粉改性聚氨酯和聚乳酸作为生物可降解辅助原料,降低发泡难度,提高发泡材料的发泡倍率、耐水性和耐候性。

(2)本发明利用碱化处理、蒸汽爆破处理、乙酰化处理等技术手段对玉米秸秆和松木渣进行改性处理,以提高植物纤维的发泡倍率及与高分子塑料的相容性。碱化处理阶段:玉米秸秆和松木渣充分润胀,比表面积增大,结晶度降低,溶出木聚糖、松胶、果胶等天然粘性成分,使其与塑料分子间的界面粘结力提高;蒸汽爆破处理阶段:利用高压蒸汽的冲击力破坏纤维素分子内的氢键,降低纤维素极性,进而改善其与淀粉改性聚氨酯和聚乳酸间的相容性,同时,掺杂的尿素会发生热解作用,协同高压蒸汽,使纤维素分子进一步膨胀,有效提高发泡倍率;乙酰化处理阶段:以碳酸钾为催化剂,利用乙酸乙烯酯、乙酸酐中的乙酰基取代玉米秸秆和松木渣残余羟基,进一步降低纤维素极性,提高复合发泡材料的界面相容性,避免各相分离、发泡材料断裂的现象。

(3)本发明利用淀粉对聚氨酯预聚体进行改性,生产出淀粉基聚氨酯,一方面赋予聚氨酯生物可降解性,减少环境污染,一方面,淀粉作为天然多糖介质,改善了聚氨酯与玉米秸秆、松木渣等纤维素间的相容性,防止相分离现象,提高发泡材料的内部粘结力。

(4)本发明利用马来酸酐类增容剂和硅烷偶联剂进一步改善生物质纤维与塑料高分子聚合物间的相容性,作为中间介质,桥梁纤维素和聚合物,形成共结晶体,提高发泡材料的力学性能和流变性能。

(5)本发明利用碳酸氢钙和偶氮二甲酰胺热分解反应对成型生胚进行膨化处理,膨胀型阻燃剂协同增效,显著提高生物基发泡材料发泡倍率,并改善生物基发泡材料的阻燃性。

具体实施方式

下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。

实施例1

s1:制备改性玉米秸秆/松木渣:

(1)碱化处理:将原玉米秸秆/松木渣粉碎至30目,加入0.1mol/l的氢氧化钠溶液中,在超声波辅助下,浸渍6h,使植物纤维素充分润胀,再进行过滤;

(2)蒸汽爆破处理:中和碱化后玉米秸秆/松木渣后,与0.1倍质量的尿素混合后,在2.8mpa的蒸汽压力下进行爆破,保压时间为150s;

(3)乙酰化处理:按1:0.5:0.3:0.01的质量比将蒸汽爆破后玉米秸秆/松木渣与乙酸乙烯酯、乙酸酐、碳酸钾混合均匀后,60℃下搅拌2h,进行乙酰化反应,得改性玉米秸秆/松木渣;

s2:制备淀粉改性聚氨酯:

(1)预聚:按1:0.5:0.01:0.2:0.01的质量比称量聚醚二元醇、异佛尔酮二异氰酸酯、催化剂、淀粉、扩链剂后,将聚醚二元醇真空脱水后,与异佛尔酮二异氰酸酯、催化剂混合,在80℃的氮气环境下,反应3h,得聚氨酯预聚体;

(2)扩链:将聚氨酯预聚体与淀粉、扩链剂混合均匀,在65℃的氮气环境下,反应4h,得淀粉改性聚氨酯;

s3:制备膨胀型阻燃剂:按重量百分比称取25%聚磷酸铵、10%三聚氰胺、5%碱式碳酸铜、60%镁铝水滑石,混合均匀后,即得膨胀型阻燃剂;

s4:制备发泡材料:按重量份将60份改性玉米秸秆、20份改性松木渣、25份淀粉改性聚氨酯、10份聚乳酸、1份聚乙烯蜡、1份纳米硼纤维、6份碳酸氢钙、4份偶氮二甲酰胺、1份丙烯酸酯类发泡调节剂、3份马来酸酐接枝聚丙烯、1份环氧大豆油、5份膨胀型阻燃剂、1份γ-氨丙基三乙氧基硅烷混合均匀,于4mpa压力下,挤压成生胚后,在100℃氮气环境下,反应1h,得所述可降解发泡材料。

实施例2

改性玉米秸秆70份、改性松木渣25份、淀粉改性聚氨酯35份、聚乳酸15份、聚乙烯蜡3份、纳米硼纤维6.5份、碳酸氢钙8份、偶氮二甲酰胺5份、丙烯酸酯类发泡调节剂1.5份、马来酸酐接枝聚乙烯4份、柠檬酸三丁酯2份、膨胀型阻燃剂7.5份、γ-氨丙基甲基二甲氧基硅烷1.5份。

制备方法同实施例1,区别在于:

s1:制备改性玉米秸秆/松木渣:

(1)碱化处理:粉碎细度为35目,氢氧化钠溶液浓度为0.3mol/l,浸渍8h;

(2)蒸汽爆破处理:尿素用量为碱化后玉米秸秆/松木渣质量的0.13倍,蒸汽压力为3.5mpa,保压时间为225s;

(3)乙酰化处理:反应温度为70℃,反应时间为3h;

s2:制备淀粉改性聚氨酯:

(1)预聚:反应温度为82℃,反应时间为4.5h;

(2)扩链:反应温度为70℃,反应时间为6h;

s3:制备膨胀型阻燃剂:聚磷酸铵28%、三聚氰胺13%、碱式碳酸铜8%、镁铝水滑石51%;

s4:制备发泡材料:挤压压力为6mpa,发泡反应温度、时间分别为110℃、2h。

实施例3

改性玉米秸秆80份、改性松木渣30份、淀粉改性聚氨酯45份、聚乳酸20份、聚乙烯蜡5份、纳米硼纤维10份、碳酸氢钙10份、偶氮二甲酰胺6份、丙烯酸酯类发泡调节剂2份、马来酸酐改性聚丁二烯5份、乙酰柠檬酸三丁酯3份、膨胀型阻燃剂10份、n-(β-氨乙基)-γ-氨丙基三甲氧基硅烷2份。

制备方法同实施例1,区别在于:

s1:制备改性玉米秸秆/松木渣:

(1)碱化处理:粉碎细度为40目,氢氧化钠溶液浓度为0.5mol/l,浸渍12h;

(2)蒸汽爆破处理:尿素用量为碱化后玉米秸秆/松木渣质量的0.15倍,蒸汽压力为4.2mpa,保压时间为300s;

(3)乙酰化处理:反应温度为80℃,反应时间为4h;

s2:制备淀粉改性聚氨酯:

(1)预聚:反应温度为85℃,反应时间为6h;

(2)扩链:反应温度为75℃,反应时间为8h;

s3:制备膨胀型阻燃剂:聚磷酸铵30%、三聚氰胺15%、碱式碳酸铜10%、镁铝水滑石45%;

s4:制备发泡材料:挤压压力为8mpa,发泡反应温度、时间分别为120℃、3h。

对实施例1-3进行性能测试,测试结果如下表所示:

由上表可知,本发明生产的发泡材料发泡倍率不低于27.5%,降解率不低于88.7%,并明显提高生物纤维与聚合物间的相容性,提高发泡材料的内部粘结力。

尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1