一种增强增韧导热聚烯烃组合物的制作方法

文档序号:20680439发布日期:2020-05-08 18:20阅读:126来源:国知局

本发明涉及一种增强增韧导热聚烯烃组合物,属于高分子复合材料领域。



背景技术:

随着社会经济快速发展,工业化进程不断推进,人类现代化发展对高分子材料的需求量日益上升,特别是对高性能高分子材料的需求急剧增加。高分子复合材料,即对聚合物进行填充、共混或复合并经过一定的加工工艺得到的复合材料。它不仅具有原始组分材料的主要特性,还能通过复合而被赋予了优越的性能,扩大了复合材料的应用范围。其中,纤维增强聚合物基复合材料是目前聚合物复合材料中应用最广、用量最大的一类。纤维增强聚合物基复合材料具有的高的比强度、比模量、良好的耐热性、耐疲劳性及化学稳定性等优点,因而被越来越多地广泛用于航空航天、汽车、机械、电子和建筑等领域。

另一方面,聚烯烃材料,特别是以聚乙烯(pe)和聚丙烯(pp)为代表的通用塑料,由于原料来源广泛、价格低廉、成型加工性能较好、性价比高等优点,在工业生产中大量应用。但它们力学性能不高,通常制品不能作为结构件使用。因此通用聚烯烃的工程化、高性能化研究具有紧迫性和必要性。

因此,基于聚烯烃材料,开发一种增强增韧导热聚烯烃组合物,显然具有积极的现实意义。



技术实现要素:

本发明的发明目的是提供一种增强增韧导热聚烯烃组合物。

为达到上述发明目的,本发明采用的技术方案是:一种增强增韧导热聚烯烃组合物,按质量份计,由聚烯烃组合物a和纳米纤维膜b构成;

所述聚烯烃组合物a按质量份计,包括如下组分:聚烯烃树脂10~100份,相容剂0.1~5份,添加剂0.01~1份;

所述纳米纤维膜b为氧化锌/尼龙6纳米纤维膜。

上文中,所述聚烯烃组合物a优选为膜层,其厚度为1~200微米,优选为5~150微米,更优选为10~100微米,更优选为20~60微米,更优选为30~40微米。

优选的,所述聚烯烃组合物a和纳米纤维膜b的质量比为1~10:1。

优选的,所述聚烯烃组合物a和纳米纤维膜b的质量比为1~3:1。

优选的,所述聚烯烃树脂选自聚乙烯、聚丙烯和乙烯-α烯烃中的一种或几种。

优选的,所述相容剂选自pe-g-mah、pp-g-mah、poe-g-mah、聚乙烯-甲基丙烯酸缩水甘油酯中的一种或几种。

优选的,所述添加剂包括抗氧剂、紫外吸收剂和光稳定剂。

优选的,所述纳米纤维膜b的制备方法如下:

(1)配置尼龙6纺丝液:将尼龙6溶于2,2,2-三氟乙醇溶剂之中,制得所述纺丝液;纺丝液中尼龙6的质量含量为15~25%;

(2)配置氧化锌悬浊液:将甲醇与氧化锌纳米颗粒混合制得所述悬浊液,悬浊液中氧化锌的质量含量为5~15%;

(3)将上述尼龙6纺丝液和氧化锌悬浊液分别加入静电纺丝机的两个注射器中,进行静电纺丝;

(4)将静电纺丝产物放入60℃真空干燥箱干燥后,即可得到所述纳米纤维膜b。

优选的,所述聚烯烃组合物为a/b/a结构,其中a为聚烯烃组合物a,b为纳米纤维膜b。

本发明同时请求保护一种增强增韧导热聚烯烃组合物的制备方法,包括如下步骤:

(1)按照上述聚烯烃组合物a的配方将原料组分投入挤出机之中,制备得到聚烯烃薄膜c;

(2)制备纳米纤维膜b,方法如下:

(a)配置尼龙6纺丝液:将尼龙6溶于2,2,2-三氟乙醇溶剂之中,制得所述纺丝液;纺丝液中尼龙6的质量含量为15~25%;

(b)配置氧化锌悬浊液:将甲醇与氧化锌纳米颗粒混合制得所述悬浊液,悬浊液中氧化锌的质量含量为5~15%;

(c)将上述尼龙6纺丝液和氧化锌悬浊液分别加入静电纺丝机的两个注射器中,进行静电纺丝;

(d)将静电纺丝产物放入60℃真空干燥箱干燥后,即可得到所述纳米纤维膜b;

(3)剪取相同尺寸的聚烯烃薄膜c和纳米纤维膜b,将b层置于两层c层中间,形成c/b/c结构;

(4)将上述c/b/c结构的膜层放入真空压膜机内进行热压,在130~200℃、14~20mpa条件下加热至少3min,同时开启真空泵对体系进行抽真空,以除去体系中的气泡,使聚烯烃薄膜c熔融渗透到纳米纤维膜b层的纤维网络中;

(5)热压完成后,自然冷却至室温,即可得到所述增强增韧导热聚烯烃组合物。

优选的,所述步骤(2)中,所述静电纺丝机的注射泵速度为0.8~1.2ml/h,两个注射器中点距离收集器10~18cm,电压为15~25kv。

本发明同时请求保护一种采用上述聚烯烃组合物制备得到的导热透明薄膜。

本发明同时请求保护一种采用上述聚烯烃组合物制备得到的导热透明板材。

本发明的工作机理如下:

首先,本发明利用两个注射器同时喷射尼龙6聚合物溶液和氧化锌悬浊液,使得合成的纳米纤维膜中氧化锌纳米粒子均匀分散在纤维表面,不仅解决了纳米氧化锌在体系中容易团聚的技术问题,而且,氧化锌/尼龙6纳米纤维膜具有较高的长径比和较大的比表面积以及分子链高度取向等特点,使复合材料拥有良好的导热性能和力学性能;

然后,将所述氧化锌/尼龙6纳米纤维膜和聚烯烃组合物a进行热压,由于氧化锌/尼龙6纳米纤维膜是以纳米纤维相互搭接而成的三维多孔结构,具有极大的孔隙率,因而在热压机内进行多层复合时,控制温度和压力,使工作温度高于聚烯烃组合物a的熔融温度、但低于氧化锌/尼龙6纳米纤维膜的软化温度,即保证聚烯烃组合物a熔融而氧化锌/尼龙6纳米纤维膜依然保持原纺纤维形态,而在压力下熔融的聚烯烃组合物a熔体可以穿透并填充纤维网络,从而制备得到复合材料;

在复合材料中,纳米纤维有异相成核作用,能够增大复合材料的结晶成核密度,提高了复合材料的结晶度,并降低了结晶的晶粒尺寸,结晶的长周期增大,非晶区厚度及过渡区域厚度增加;提高了复合材料的韧性,拉伸强度及杨氏模量增大,尼龙6具有很好的刚性,由其组成的纳米纤维网络在复合材料中可以起到骨架作用,使复合材料刚性增大。

由于上述技术方案运用,本发明与现有技术相比具有下列优点:

1.本发明开发了一种新的增强增韧导热聚烯烃组合物,以氧化锌/尼龙6纳米纤维膜为骨架,并采用聚烯烃组合物a进行填充,得到的复合材料韧性好、拉伸强度及杨氏模量大,且具有极好的导热性;

2.本发明采用静电纺丝的方法制得了氧化锌/尼龙6纳米纤维膜,不仅解决了纳米氧化锌在体系中容易团聚的技术问题,而且得到了拥有良好的导热性能和力学性能的纳米纤维膜材料;

3.本发明的制备方法简单易行,且成本较低,适于推广应用。

具体实施方式

实施例一

一种增强增韧导热聚烯烃组合物,配方和制备方法如下:

a:100份hdpe(北京燕山石化公司)、2份pe-g-mah(北京加成助剂研究所)、0.1份抗氧剂2,6-三级丁基-4-甲基苯酚(北京加成助剂研究所)、0.2份紫外线吸收剂2-羟基-4-正辛氧基二苯甲酮(北京加成助剂研究所)、0.2份光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯(北京加成助剂研究所)混合均匀;将所述混合均匀后的物料投入挤出机挤出厚度为10微米的薄膜;

b:将20g尼龙6溶于2,2,2-三氟乙醇溶剂且含量为20wt%,将10g纳米氧化锌颗粒分散于甲醇制备含量为10wt%的氧化锌悬浮液并超声震荡15min,分别加入静电纺丝机的两个并排放置的注射器中,注射泵速度为1ml/h,两个注射器中点距离收集器15cm,电压为20kv进行静电纺丝,将产物放入60℃真空干燥箱干燥24h,得到zno/nylon6纳米纤维膜;

剪取80x80mm2的a和b薄膜,将b置于两层a层中间形成a/b/a结构,置于聚四氟乙烯压板之间,放入真空压膜机内,180℃,15mpa条件下加热5min,同时开启真空泵对体系进行抽真空,用来除去体系中所含气泡,a熔融渗透到b层的纤维网络中;热压完成后,自然冷却至室温,得到一种增强增韧导热聚烯烃组合物构成的复合膜。

实施例二

一种增强增韧导热聚烯烃组合物,配方和制备方法如下:

a:与实施例一相同;

b:将40g尼龙6溶于2,2,2-三氟乙醇溶剂且含量为20wt%,将20g纳米氧化锌颗粒分散于甲醇制备含量为10wt%的氧化锌悬浮液并超声震荡15min,分别加入静电纺丝机的两个并排放置的注射器中,注射泵速度为1ml/h,两个注射器中点距离收集器15cm,电压为20kv进行静电纺丝,将产物放入60℃真空干燥箱干燥24h,得到zno/nylon6纳米纤维膜;

剪取80x80mm2的a和b薄膜,将b置于两层a层中间形成a/b/a结构,置于聚四氟乙烯压板之间,放入真空压膜机内,200℃,15mpa条件下加热5min,同时开启真空泵对体系进行抽真空,用来除去体系中所含气泡,a熔融渗透到b层的纤维网络中;热压完成后,自然冷却至室温,得到一种增强增韧导热聚烯烃组合物构成的复合膜。

实施例三

一种增强增韧导热聚烯烃组合物,配方和制备方法如下:

a:与实施例一相同;

b:将60g尼龙6溶于2,2,2-三氟乙醇溶剂且含量为20wt%,将30g纳米氧化锌颗粒分散于甲醇制备含量为10wt%的氧化锌悬浮液并超声震荡15min,分别加入静电纺丝机的两个并排放置的注射器中,注射泵速度为1ml/h,两个注射器中点距离收集器15cm,电压为20kv进行静电纺丝,将产物放入60℃真空干燥箱干燥24h,得到zno/nylon6纳米纤维膜;

剪取80x80mm2的a和b薄膜,将b置于两层a层中间形成a/b/a结构,置于聚四氟乙烯压板之间,放入真空压膜机内,200℃,15mpa条件下加热5min,同时开启真空泵对体系进行抽真空,用来除去体系中所含气泡,a熔融渗透到b层的纤维网络中;热压完成后,自然冷却至室温,得到一种增强增韧导热聚烯烃组合物构成的复合膜。

对比例一

一种聚烯烃组合物,配方和制备方法如下:

100份hdpe(北京燕山石化公司)、20份纳米氧化锌颗粒、2份pe-g-mah(北京加成助剂研究所)、0.1份抗氧剂2,6-三级丁基-4-甲基苯酚(北京加成助剂研究所)、0.2份紫外线吸收剂2-羟基-4-正辛氧基二苯甲酮(北京加成助剂研究所)、0.2份光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯(北京加成助剂研究所)混合均匀;将所述混合均匀后的物料投入挤出机挤出厚度为20微米的薄膜;

对比例二

一种聚烯烃组合物,配方和制备方法如下:

a组分:100份hdpe(北京燕山石化公司)、40份尼龙6(北京燕山石化公司)、20份纳米氧化锌颗粒、2份pe-g-mah(北京加成助剂研究所)、0.1份抗氧剂2,6-三级丁基-4-甲基苯酚(北京加成助剂研究所)、0.2份紫外线吸收剂2-羟基-4-正辛氧基二苯甲酮(北京加成助剂研究所)、0.2份光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯(北京加成助剂研究所)混合均匀;将所述混合均匀后的物料投入挤出机挤出厚度为20微米的薄膜。

测试实施例及对比例中复合材料的部分性能,详见下表:

上表中:s1至s3代表实施例一至三,d1和d2代表对比例一和二。

由上表可知,实施例一与比例一、二对比可以发现,与直接加入导热填料或是直接与尼龙6和导热填料共混得到的材料相比,聚乙烯与zno/nylon6纳米纤维膜复合制备的材料不管是导热性能还是力学性能都有极大的提升,以纳米纤维膜作为材料的骨架,不仅使复合材料增强增韧,也能避免导热填料团聚带来的负面影响,改善复合材料的性能。

实施例一至三为纯聚乙烯树脂与不同质量纳米纤维膜b复合制备的材料,通过对比发现,当聚烯烃组合物a为100份聚乙烯,组合物b为40g尼龙6和20g纳米氧化锌时,制备的复合材料综合性能最好,导热系数达到了17.7w/m·k,收缩率为0.3%(纵向)和0.3%(横向),断裂伸长率为96%,拉伸强度达到了53mpa,低温冲击强度为56kj/m2,制备出一种具有优良力学性能的导热复合材料。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1