石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用与流程

文档序号:20697447发布日期:2020-05-12 15:11阅读:472来源:国知局
石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用与流程

本发明属于材料科学和电化学技术领域,尤其是涉及一种石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用。



背景技术:

随着能源与环境问题的日益凸显,新能源产业得到了越来越多的重视。可便携式电子设备和电动汽车等行业的发展十分迅速,锂离子电池因能量密度高,循环性能好和无记忆效应等优势被非常广泛应用在储能设备上。

锂离子电池是由正极、负极、隔膜和电解液所组成的储能器件,其中电极材料是决定其性能的关键因素。常用的正极材料为锂离子嵌入化合物等。但是传统的正极材料在锂化过程有着体积膨胀的缺陷,从而导致材料的粉碎,导致断裂和电接触的损失。为了探索新的电极材料,科研人员对有机电极材料展开了研究。与无机电极材料相比,预计电极材料具有结构可变、氧化还原稳定性、低成本和环境保护等优点。基于此,人们一般通过对有机电极材料进行结构设计来提高其电化学性能。

中国专利cn108440753a公布了一种碳纳米管/聚苯胺/石墨烯复合柔性薄膜及其制备方法。该方法包括:步骤1.将酸化处理过的碳纳米管加入含有苯胺的酸性溶液中,超声后加入氧化剂,在0~25℃反应12~36h,得到聚苯胺包覆的碳纳米管,碳纳米管、苯胺、氧化剂的质量比为0.01~1:0.1~1:0.5~2;步骤2.取聚苯胺包覆的碳纳米管加入石墨烯分散液中,在5~20℃超声,然后进行抽滤,得到碳纳米管/聚苯胺/石墨烯复合柔性薄膜。但是由于层状石墨所制备出的氧化石墨烯(go),由于其表面氧化基团的影响,自身团聚严重,其比表面积大大下降,吸附能力减弱,且在水溶液中很难均匀分散,因此在与苯胺的聚合过程中,达不到预期的复合效果,使得电池的容量和循环性能无法满足要求



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的电学性能不佳的缺陷而提供一种石墨烯/碳纳米管/聚苯胺复合材料的制备方法及应用。

本发明的目的可以通过以下技术方案来实现:

一种石墨烯/碳纳米管/聚苯胺复合材料的制备方法,包括以下步骤:

(1)将氧化石墨烯进行草酸化改性获得改性氧化石墨烯;然后将改性氧化石墨烯分散于水中获得改性氧化石墨烯悬浮液,加入浓盐酸;

(2)控制步骤(1)得到的混合物料的温度在10℃以下,加入苯胺单体,超声分散均匀,在反应温度为0~5℃的条件下进行预反应获得苯胺修饰的石墨烯;

(3)维持混合物料的温度为5℃以下,将步骤(2)得到的苯胺修饰的石墨烯和碳纳米管混合均匀;然后加入活性mno2和过硫酸铵,控制混合物料的温度为5~8℃,进行氧化聚合反应;

(4)将反应后的物料经过固液分离、洗涤、干燥得到hcl掺杂的石墨烯/碳纳米管/聚苯胺复合材料;

(5)向hcl掺杂的石墨烯/碳纳米管/聚苯胺复合材料中加入氨水和水合肼进行脱掺杂和还原处理,得到所述石墨烯/碳纳米管/聚苯胺复合材料。

所述改性氧化石墨烯、苯胺、碳纳米管、活性mno2和过硫酸铵的质量比为1:50~75:0.2~0.6:4~6:70~215。

步骤(1)中,加入浓盐酸后,搅拌,进一步加入曲拉通,反应0.5~1.5小时得到混合物料;所述改性氧化石墨烯和曲拉通的质量比为1:0.3~0.4。

所述预反应的反应时间为15~25分钟,优选为20分钟;所述氧化聚合反应的反应时间为3.5~4.5小时,优选为4小时。

步骤(3)中,苯胺修饰的石墨烯和碳纳米管混合时间为25~35分钟,所述的过硫酸铵分批次加入反应体系中。

所述活性mno2缓慢加入反应体系中,8~12min加完。所述改性氧化石墨烯的制备方法为向氧化石墨烯悬浮液中加入hbr溶液;70~80℃水浴条件下搅拌反应10~20小时,加入草酸,继续搅拌反应3~7小时,反应完成后,将得到的混合物料抽滤、水洗、干燥得到改性氧化石墨烯;所述的氧化石墨烯和草酸的质量比为1:20~30。

所述活性mno2放入制备方法包括以下步骤:

取硫酸锰溶解于水中,并向溶液中滴加一滴h2so4,得到硫酸锰溶液;

取高锰酸钾溶解于水中,并滴加一滴hclo4,得到高锰酸钾溶液;

将硫酸锰溶液滴加到高锰酸钾溶液中,40~60℃反应1.5~2.5小时;

将反应后的混合物料抽滤,将得到的滤饼用去离子水洗涤至滤液为中性,然后将固体物料分散于水中,冷藏备用。

整个制备过程中,通过向混合物料中加入去离子冰控制混合物料的温度。

本发明还提供了一种采用上述的制备方法得到的石墨烯/碳纳米管/聚苯胺复合材料的应用,所述石墨烯/碳纳米管/聚苯胺复合材料和粘结剂混合均匀,涂覆到铝箔上,干燥后得到锂离子电池正极材料。

所述石墨烯/碳纳米管/聚苯胺复合材料和粘结剂的质量比为4:1,所述粘结剂为pvdf。

本发明的制备过程中,首先需要对氧化石墨烯进行草酸化改性,利用功能化石墨烯材料与苯胺复合,得到聚苯胺包覆石墨烯的层状结构,功能化石墨烯材料自身的团聚现象会得到改善,能够更好地吸附苯胺,同时,石墨烯表面的一些功能化基团可以与苯胺发生化学反应,形成具有化学键合的聚苯胺复合材料。这种复合材料,聚苯胺的团聚现象会得到改善,使其分子内部的利用率提高,离子的掺杂与脱掺杂更加完全,而聚苯胺和石墨烯的结合力很强,材料作为电池正极材料在充放电过程中,分解和脱落的现象会得到抑制,这使得电池的容量和循环性能都得到提高。

本发明的制备过程中,通过对比以往的科研数据,将石墨烯、碳纳米管和苯胺的参与反应的量规定在本发明范围内,如果石墨烯的量太多导致活性物质苯胺单体的负载率过多,影响材料的利用效率,反之太少导致活性物质的量过少导致电化学性能较低。

与现有技术相比,本发明具有以下优点:

(1)本发明通过对氧化石墨烯进行改性,再与碳纳米管进行混合进行制备聚苯胺复合材料的合成,在反应过程中,聚苯胺能够均匀的覆盖在石墨烯和碳纳米管上,工艺简单,条件温和,容易在工业上扩大生产。

(2)本发明以石墨烯和碳纳米管为碳源、聚苯胺作为复合材料,具有原料可设计性,成本低廉的优势;

(3)本发明所制备改性石墨烯/碳纳米管/聚苯胺复合材料作为锂离子电池正极显示了优异的电化学性能,具有高的放电比容量和倍率性能,并且该材料具有无毒环保可再生、低成本等特点,符合锂离子电池绿色发展的趋势,在便携式电子设备、汽车电池以及新型材料电池等领域具有非常好的应用前景。

附图说明

图1为实施例1得到的石墨烯/碳纳米管/聚苯胺复合材料的sem照片;

图2为实施例1得到的石墨烯/碳纳米管/聚苯胺复合材料作为锂离子电池正极材料的循环性能图;

图3为实施例1得到的石墨烯/碳纳米管/聚苯胺复合材料作为锂离子电池正极材料的倍率性能图。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

实施例1

一种石墨烯/碳纳米管/聚苯胺复合材料的制备以及用作锂离子电池正极材料的电化学性能测试;

(1)制备的步骤如下:

第一步、制备草酸化的石墨烯溶液:

取50ml的5mg/ml氧化石墨烯溶液于烧杯中,加入19mlhbr溶液,75℃水浴强烈搅拌反应15h,然后将6.25g草酸加入,继续搅拌反应5h,反应完成后,抽滤,水洗三次,在60℃真空干燥24h,得到草酸化的石墨烯。

第二步、活性mno2的制备。

取10.14gmnso4·h2o溶解于50ml去离子水中,滴加一滴h2so4;取6.32gkmno4溶解于200ml去离子水中,滴加一滴hclo4;将mnso4溶液缓慢滴加到kmno4溶液中,30分钟滴完,50℃水浴反应2h,抽滤,将得到的滤饼用去离子水洗涤至滤液为中性,随后将其溶解于50ml去离子水中,冷藏备用。

第三步、制备改性石墨烯/碳纳米管/聚苯胺复合材料

取2g超声均匀分散的草酸化的石墨烯溶液于1l的反应釜中,加入150ml去离子水,然后再超声分散45分钟,加入200g浓盐酸,搅拌,加入0.72g曲拉通,反应1h,备用。将100g去离子冰加入到反应釜中,使其内部温度降至10℃以下,随后加入100g苯胺单体,釜内温度控制在0℃,反应20min。然后将0.8g碳纳米管缓慢加入反应釜中。待苯胺修饰的石墨烯和碳纳米管混合均匀后,缓慢加入10g所制备的活性mno2,8min加完。反应30分钟后,每1分钟加1.43g过硫酸铵(aps),共加入100次,总计为143gaps,期间可向反应釜内加冰,使温度维持在5℃以下,加完后,维持反应釜内温度为5~8℃,反应4h。反应完毕后,抽滤,得滤饼,水洗3次,乙醇洗一次,得掺杂hcl的聚苯胺/石墨烯/碳纳米管三元复合材料。取出其中一些湿粉,加入适量氨水和水合肼进行脱掺杂和还原,可得到还原态改性石墨烯/碳纳米管/聚苯胺复合材料,记为pani/rgo/cnts-1。该复合材料的sem照片如图1所示,通过图1可以发现,石墨烯骨架上有许多聚苯胺聚合物小颗粒,说明聚苯胺在反应过程中成功的原位生长于石墨烯骨架上。

(2)以所得复合材料作为锂离子电池正极材料组装成锂离子纽扣式半电池,使用纯锂片作为对电极。将1mlitfsi溶解在1,3-二氧戊环(dol)/乙二醇二甲醚(dme)(体积比为1:1)的混合溶液中配置为电解液,利用纽扣式半电池进行电化学测试,其循环性能图、倍率性能图分别如图2、3所示。

实施例2

一种石墨烯/碳纳米管/聚苯胺复合材料的制备以及用作锂离子电池正极材料的电化学性能测试;

(1)制备的步骤如下:

第一步、制备草酸化的石墨烯溶液:

取50ml的5mg/ml氧化石墨烯溶液于烧杯中,加入19mlhbr溶液,75℃水浴强烈搅拌反应15h,然后将6.25g草酸加入,继续搅拌反应5h,反应完成后,抽滤,水洗三次,在60℃真空干燥24h,得到草酸化的石墨烯。

第二步、活性mno2的制备。

取10.14gmnso4·h2o溶解于50ml去离子水中,滴加一滴h2so4;取6.32gkmno4溶解于200ml去离子水中,滴加一滴hclo4;将mnso4溶液缓慢滴加到kmno4溶液中,30分钟滴完,50℃水浴反应2h,抽滤,将得到的滤饼用去离子水洗涤至滤液为中性,随后将其溶解于50ml去离子水中,冷藏备用。

第三步、制备改性石墨烯/碳纳米管/聚苯胺复合材料

取2g超声均匀分散的草酸化的石墨烯溶液于1l的反应釜中,加入150ml去离子水,然后再超声分散45分钟,加入200g浓盐酸,搅拌,加入0.72g曲拉通,反应1h,备用。将100g去离子冰加入到反应釜中,使其内部温度降至10℃以下,随后加入150g苯胺单体,釜内温度控制在0℃,反应20min。然后将0.8g碳纳米管缓慢加入反应釜中。待苯胺修饰的石墨烯和碳纳米管混合均匀后,缓慢加入10g所制备的活性mno2,12min加完。反应30分钟后,每1分钟加2.86gaps,共加入100次,总计为286gaps,期间可向反应釜内加冰,使温度维持在5℃以下,加完后,维持反应釜内温度为5~8℃,反应4h。反应完毕后,抽滤,得滤饼,水洗3次,乙醇洗一次,得掺杂hcl的聚苯胺/石墨烯/碳纳米管三元复合材料。取出其中一些湿粉,加入适量氨水和水合肼进行脱掺杂和还原,可得到还原态改性石墨烯/碳纳米管/聚苯胺复合材料,记为pani/rgo/cnts-2。

(2)以所得复合材料作为锂离子电池正极材料组装成锂离子纽扣式半电池,使用纯锂片作为对电极。将1mlitfsi溶解在1,3-二氧戊环(dol)/乙二醇二甲醚(dme)(体积比为1:1)的混合溶液中配置为电解液,利用纽扣式半电池进行电化学测试,其循环性能图、倍率性能图分别如图2、3所示。

实施例3

一种石墨烯/碳纳米管/聚苯胺复合材料的制备以及用作锂离子电池正极材料的电化学性能测试;

(1)制备的步骤如下:

第一步、制备草酸化的石墨烯溶液:

取50ml的5mg/ml氧化石墨烯溶液于烧杯中,加入19mlhbr溶液,75℃水浴强烈搅拌反应15h,然后将6.25g草酸加入,继续搅拌反应5h,反应完成后,抽滤,水洗三次,在60℃真空干燥24h,得到草酸化的石墨烯。

第二步、活性mno2的制备。

取10.14gmnso4·h2o溶解于50ml去离子水中,滴加一滴h2so4;取6.32gkmno4溶解于200ml去离子水中,滴加一滴hclo4;将mnso4溶液缓慢滴加到kmno4溶液中,30分钟滴完,50℃水浴反应2h,抽滤,将得到的滤饼用去离子水洗涤至滤液为中性,随后将其溶解于50ml去离子水中,冷藏备用。

第三步、制备改性石墨烯/碳纳米管/聚苯胺复合材料

取2g超声均匀分散的草酸化的石墨烯溶液于1l的反应釜中,加入150ml去离子水,然后再超声分散45分钟,加入200g浓盐酸,搅拌,加入0.72g曲拉通,反应1h,备用。将100g去离子冰加入到反应釜中,使其内部温度降至10℃以下,随后加入150g苯胺单体,釜内温度控制在5℃,反应20min。然后将0.8g碳纳米管缓慢加入反应釜中。待苯胺修饰的石墨烯和碳纳米管混合均匀后,缓慢加入10g所制备的活性mno2,8min加完。反应30分钟后,每1分钟加4.29gaps,共加入100次,总计为429gaps,期间可向反应釜内加冰,使温度维持在5℃以下,加完后,维持反应釜内温度为5-8℃,反应4h。反应完毕后,抽滤,得滤饼,水洗3次,乙醇洗一次,得掺杂hcl的聚苯胺/石墨烯/碳纳米管三元复合材料。取出其中一些湿粉,加入适量氨水和水合肼进行脱掺杂和还原,可得到还原态改性石墨烯/碳纳米管/聚苯胺复合材料,记为pani/rgo/cnts-3。

(2)以所得复合材料作为锂离子电池正极材料组装成锂离子纽扣式半电池,使用纯锂片作为对电极。将1mlitfsi溶解在1,3-二氧戊环(dol)/乙二醇二甲醚(dme)(体积比为1:1)的混合溶液中配置为电解液,利用纽扣式半电池进行电化学测试,其循环性能图、倍率性能图分别如图2、3所示。

从图2中可以看出,通过增加聚苯胺的量,复合材料pani/rgo/cnts-1和pani/rgo/cnts-2的电化学性能随之上升,但是石墨烯和聚苯胺的量比例增加到1:75时,复合材料pani/rgo/cnts-3的电化学性能下降,说明过量的聚苯胺使得颗粒堆积,影响了活性材料的有效接触和利用率。从图3中可以看出在不同的电流密度下,复合材料pani/rgo/cnts-1和pani/rgo/cnts-2的电化学性能随之上升。而复合材料pani/rgo/cnts-2具有较高的放电比容量,很好地操持循环的稳定性,复合材料pani/rgo/cnts-3的循环稳定性不好且电化学性能较低。

实施例4

一种石墨烯/碳纳米管/聚苯胺复合材料的制备以及用作锂离子电池正极材料的电化学性能测试;

(1)制备的步骤如下:

第一步、制备草酸化的石墨烯溶液:

取50ml的5mg/ml氧化石墨烯溶液于烧杯中,加入19mlhbr溶液,70℃水浴强烈搅拌反应20h,然后将6.25g草酸加入,继续搅拌反应3h,反应完成后,抽滤,水洗三次,在60℃真空干燥24h,得到草酸化的石墨烯。

第二步、活性mno2的制备。

取10.14gmnso4·h2o溶解于50ml去离子水中,滴加一滴h2so4;取6.32gkmno4溶解于200ml去离子水中,滴加一滴hclo4;将mnso4溶液缓慢滴加到kmno4溶液中,30分钟滴完,60℃水浴反应1.5h,抽滤,将得到的滤饼用去离子水洗涤至滤液为中性,随后将其溶解于50ml去离子水中,冷藏备用。

第三步、制备改性石墨烯/碳纳米管/聚苯胺复合材料

取2g超声均匀分散的草酸化的石墨烯溶液于1l的反应釜中,加入150ml去离子水,然后再超声分散45分钟,加入200g浓盐酸,搅拌,加入0.6g曲拉通,反应1.5h,备用。将100g去离子冰加入到反应釜中,使其内部温度降至10℃以下,随后加入100g苯胺单体,釜内温度控制在0℃,反应25min。然后将0.4g碳纳米管缓慢加入反应釜中。待苯胺修饰的石墨烯和碳纳米管混合均匀后,缓慢加入10g所制备的活性mno2,8min加完。反应35分钟后,每1分钟加1.43gaps,共加入100次,总计为143gaps,期间可向反应釜内加冰,使温度维持在5℃以下,加完后,维持反应釜内温度为5℃,反应4.5h。反应完毕后,抽滤,得滤饼,水洗3次,乙醇洗一次,得掺杂hcl的聚苯胺/石墨烯/碳纳米管三元复合材料。取出其中一些湿粉,加入适量氨水和水合肼进行脱掺杂和还原,可得到还原态改性石墨烯/碳纳米管/聚苯胺复合材料,记为pani/rgo/cnts-1。该复合材料的sem照片如图1所示,通过图1可以发现,石墨烯骨架上有许多聚苯胺聚合物小颗粒,说明聚苯胺在反应过程中成功的原位生长于石墨烯骨架上。

(2)以所得复合材料作为锂离子电池正极材料组装成锂离子纽扣式半电池,使用纯锂片作为对电极。将1mlitfsi溶解在1,3-二氧戊环(dol)/乙二醇二甲醚(dme)(体积比为1:1)的混合溶液中配置为电解液,利用纽扣式半电池进行电化学测试,其循环性能图、倍率性能图分别如图2、3所示。

实施例5

一种石墨烯/碳纳米管/聚苯胺复合材料的制备以及用作锂离子电池正极材料的电化学性能测试;

(1)制备的步骤如下:

第一步、制备草酸化的石墨烯溶液:

取5mg/ml氧化石墨烯溶液50ml的于烧杯中,加入19mlhbr溶液,75℃水浴强烈搅拌反应15h,然后将6.25g草酸加入,继续搅拌反应7h,反应完成后,抽滤,水洗三次,在60℃真空干燥24h,得到草酸化的石墨烯。

第二步、活性mno2的制备。

取10.14gmnso4·h2o溶解于50ml去离子水中,滴加一滴h2so4;取6.32gkmno4溶解于200ml去离子水中,滴加一滴hclo4;将mnso4溶液缓慢滴加到kmno4溶液中,30分钟滴完,40℃水浴反应2.5h,抽滤,将得到的滤饼用去离子水洗涤至滤液为中性,随后将其溶解于50ml去离子水中,冷藏备用。

第三步、制备改性石墨烯/碳纳米管/聚苯胺复合材料

取2g超声均匀分散的草酸化的石墨烯溶液于1l的反应釜中,加入150ml去离子水,然后再超声分散45分钟,加入200g浓盐酸,搅拌,加入0.8g曲拉通,反应0.5h,备用。将100g去离子冰加入到反应釜中,使其内部温度降至10℃以下,随后加入100g苯胺单体,釜内温度控制在5℃,反应15min。然后将1.2g碳纳米管缓慢加入反应釜中。待苯胺修饰的石墨烯和碳纳米管混合均匀后,缓慢加入12g所制备的活性mno2,12min加完。反应25分钟后,每1分钟加1.43gaps,共加入100次,总计为143gaps,期间可向反应釜内加冰,使温度维持在5℃以下,加完后,维持反应釜内温度为8℃,反应3.5h。反应完毕后,抽滤,得滤饼,水洗3次,乙醇洗一次,得掺杂hcl的聚苯胺/石墨烯/碳纳米管三元复合材料。取出其中一些湿粉,加入适量氨水和水合肼进行脱掺杂和还原,可得到还原态改性石墨烯/碳纳米管/聚苯胺复合材料,记为pani/rgo/cnts-1。该复合材料的sem照片如图1所示,通过图1可以发现,石墨烯骨架上有许多聚苯胺聚合物小颗粒,说明聚苯胺在反应过程中成功的原位生长于石墨烯骨架上。

(2)以所得复合材料作为锂离子电池正极材料组装成锂离子纽扣式半电池,使用纯锂片作为对电极。将1mlitfsi溶解在1,3-二氧戊环(dol)/乙二醇二甲醚(dme)(体积比为1:1)的混合溶液中配置为电解液,利用纽扣式半电池进行电化学测试,其循环性能图、倍率性能图分别如图2、3所示。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1