一种MXene/聚合物复合材料及其制备方法和应用与流程

文档序号:21814256发布日期:2020-08-11 21:22阅读:1496来源:国知局
一种MXene/聚合物复合材料及其制备方法和应用与流程

本发明涉及一种mxene/聚合物复合材料及其制备方法和应用,属于纳米功能材料制备领域。



背景技术:

随着现代工业生产的快速发展,水体中重金属污染日趋严重。重金属不能被生物降解,易在生物体和人体内富集,过量的重金属对生态环境和人类健康造成巨大威胁。如重金属cr(ⅵ)具有强致癌性和致突变能力,是国际上公认的三种致癌金属物之一。因此,采取高效的方法对水体中重金属污染进行治理具有重要意义。水体中重金属污染处理方法,主要有沉淀法、电解法、离子交换法、膜分离法、微生物法和吸附法等。其中吸附法具有操作简单、灵活、吸附效率高、高选择性和低成本等优点而被广泛应用。

二维过渡金属碳化物或氮化物,即mxene,是一类新型的二维层状结构材料。在吸附应用方面,由于mxene纳米片具有高比表面积、丰富的表面官能团以及亲水性等特点,使其作为吸附材料受到广泛重视。目前将mxene纳米片作为吸附材料,用于重金属cu2+、cd2+和cr2o72-的吸附,具有较好的去除效果。但是,mxene纳米片很容易发生团聚、堆叠,导致吸附活性位点减少,进而使其吸附性能下降;此外,由于mxene纳米片粒度尺寸小,难以在水中沉降,分离回收困难,这很可能对水体造成二次污染。因此,开发高效、易分离回收的功能性mxene重金属吸附剂具有重要的研究价值。

聚合物电解质是一种分子链上带有可离子化基团的聚合物,由于其存在的电荷相互作用,因此具有很好的水溶性。



技术实现要素:

本发明的目的在于提供一种高性能重金属吸附剂及其制备方法。本发明利用卤化物与聚(4-乙烯基吡啶)进行季胺化反应设计合成聚(4-乙烯基吡啶)盐这类聚电解质阳离子,结合mxene纳米片具有良好亲水性及带负电荷表面的特点,通过聚(4-乙烯基吡啶)盐与mxene纳米片进行复合,制备了一种具有吸附效率高、高选择性及易分离回收的重金属吸附剂。

一种mxene/聚合物复合材料,所述mxene/聚合物复合材料由mxene纳米片和聚(4-乙烯基吡啶)盐构成,且所述mxene纳米片之间通过聚(4-乙烯基吡啶)盐连接构成三维网络结构。

本发明所述mxene/聚合物复合材料由mxene纳米片利用其表面所带负电荷与聚(4-乙烯基吡啶)盐所带正电荷进行静电组装所得。

本发明所述mxene/聚合物复合材料由mxene纳米片和聚(4-乙烯基吡啶)盐自组装所得。所述mxene/聚合物复合材料利用mxene纳米片表面所带负电荷与聚(4-乙烯基吡啶)盐所带正电荷进行静电组装。mxene纳米片进行三维组装构成三维网络的骨架结构,mxene纳米片之间通过和聚(4-乙烯基吡啶)盐连接,mxene纳米片间为无规则组装。

优选地,所述聚(4-乙烯基吡啶)盐按下述方法制得:将聚(4-乙烯基吡啶)与甲醇以质量比1:5~1:20混合,室温下搅拌至聚(4-乙烯基吡啶)完全溶解;将卤化物按卤化物与4-乙烯基吡啶单体的摩尔比为1:1~3:1逐滴加入到聚(4-乙烯基吡啶)溶液中;滴加完毕后,0~60℃下搅拌反应48~96h后,将所得沉淀物用无水乙醚浸泡后真空干燥,得到聚(4-乙烯基吡啶)盐,

其中,所述卤化物为盐酸、溴乙烷、1-溴丁烷、1-溴己烷或1-溴辛烷。

进一步地,所述聚(4-乙烯基吡啶)的重均分子量为mw=60000g/mol。

进一步地,滴加完毕后,0~60℃下搅拌反应48~96h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

优选地,所述mxene纳米片按下述方法制得:将lif按8g:100ml的比例加入到6~9m盐酸中搅拌溶解;溶解完全后,加入ti3alc2粉末,20~40℃下搅拌反应24~72h,ti3alc2粉末与lif的质量比1:1~1:3;反应结束后,经离心、洗涤、超声、离心、干燥,得到ti3c2相mxene纳米片。

进一步地,反应结束后,经离心、用去离子水洗涤反复操作6~10次,再将离心产物用去离子水分散,超声处理1~4h,离心后真空干燥,得到mxene纳米片。

优选地,将ti3c2相mxene纳米片分散在去离子水中,配制成5~20mg/ml的分散液;氮气或氩气氛围下,向mxene纳米片分散液逐滴加入聚(4-乙烯基吡啶)盐水溶液,mxene纳米片与聚(4-乙烯基吡啶)盐质量比1:1~1:5;滴加完毕后,室温下600~1000rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene/聚合物复合材料。

本发明的另一目的是提供上述mxene/聚合物复合材料的制备方法。

一种mxene/聚合物复合材料的制备方法,包括下述工艺步骤:

(1)将lif按8g:100ml的比例加入到6~9m盐酸中搅拌溶解;溶解完全后,加入ti3alc2粉末,20~40℃下搅拌反应24~72h,ti3alc2粉末与lif的质量比1:1~1:3;反应结束后,经离心、洗涤、超声、离心、干燥,得到ti3c2相mxene纳米片;

(2)将聚(4-乙烯基吡啶)与甲醇以质量比1:5~1:20混合,室温下搅拌至聚(4-乙烯基吡啶)完全溶解;将卤化物按卤化物与4-乙烯基吡啶单体的摩尔比为1:1~3:1逐滴加入到聚(4-乙烯基吡啶)溶液中;滴加完毕后,0~60℃下搅拌反应48~96h后,将所得沉淀物用无水乙醚浸泡后真空干燥,得到聚(4-乙烯基吡啶)盐,其中,所述卤化物为盐酸、溴乙烷、1-溴丁烷、1-溴己烷或1-溴辛烷;

(3)将ti3c2相mxene纳米片分散在去离子水中,配制成5~20mg/ml的分散液;氮气或氩气氛围下,向mxene纳米片分散液逐滴加入聚(4-乙烯基吡啶)盐水溶液,mxene纳米片与聚(4-乙烯基吡啶)盐质量比1:1~1:5;滴加完毕后,室温下600~1000rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene/聚合物复合材料。

本发明的又一目的是提供上述mxene/聚合物复合材料作为cr(ⅵ)吸附剂的应用。

一种cr(ⅵ)的吸附方法,将所述mxene/聚合物复合材料分散于含有cr离子的溶液中,在ph=5,25℃下进行搅拌。

优选地,所述方法还包括吸附后的过滤步骤,将进行吸附后的mxene/聚合物复合材料利用0.22μm滤膜过滤实现固液分离。

本发明的有益效果为:本发明所制备的mxene/聚合物复合材料在获得mxene纳米片和聚电解质阳离子基础上,利用mxene纳米片表面负电荷与聚电解质阳离子所带正电荷之间的静电自组装,以获得具有稳定三维网络结构的mxene/聚合物复合材料。一方面,稳定三维网络结构的形成可以有效地阻碍mxene纳米片的团聚,暴露更多的吸附活性位点,提升mxene纳米片的吸附性能;另一方面聚电解质阳离子的引入使mxene/聚合物复合材料吸附剂具有易分离回收、环境友好等优势。利用本发明提供的吸附剂进行cr2o72-的吸附,其去除率最高可达97%,且操作简单、环境友好。单独的mxene纳米片作为吸附材料分散在水体中时,形成mxene胶体水溶液进行吸附,吸附结束后,很难通过离心或过滤等操作分离回收mxene纳米片;而mxene纳米片与聚合物复合后,在水体中以粉末颗粒状态进行吸附,吸附结束后,通过简单的沉淀或过滤等操作便可分离回收mxene/聚合物复合材料。

附图说明

图1是本发明实施例3制备mxene纳米片的sem图。

图2是本发明实施例3合成聚(4-乙烯基吡啶)盐和所用聚(4-乙烯基吡啶)的ft-ir图。

图3是本发明实施例3制备mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂的sem图。

图4是本发明实施例1~6与对比例1所制备吸附剂对浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液的去除率。通过图4可看出,实施例3制备的吸附剂对cr(ⅵ)的去除率高达97%。

具体实施方式

下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。

下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。

下述实施例中,所述聚(4-乙烯基吡啶)的重均分子量为mw=60000g/mol。

实施例1

(1)取8glif加入到100ml的9m盐酸中搅拌溶解;溶解完全后,加入4gti3alc2粉末,20℃下搅拌反应72h;反应结束后,经离心、(用去离子水)洗涤反复操作10次,再将离心产物用去离子水分散,超声处理1h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取5g聚(4-乙烯基吡啶)与50g甲醇混合,室温搅拌至聚(4-乙烯基吡啶)完全溶解;溶液搅拌均匀后,溶液搅拌均匀后,将3.96ml的12m盐酸逐滴加入到上述溶液;滴加完毕后,0℃下搅拌反应96h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

(3)取ti3c2相mxene纳米片0.3g分散在去离子水中,配制成10mg/ml浓度的分散液;氮气氛围下,向mxene纳米片分散液逐滴加入2wt%聚(4-乙烯基吡啶)盐水溶液30ml;滴加完毕后,室温下800rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂。

(4)取16mgmxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤便可快速实现固液分离,用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为28ppm,计算得到cr(ⅵ)的去除率为83%。

实施例2

(1)取8glif加入到100ml的6m盐酸中搅拌溶解;溶解完全后,加入6gti3alc2粉末,30℃下搅拌反应72h;反应结束后,经离心、(用去离子水)洗涤反复操作8次,再将离心产物用去离子水分散,超声处理3h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取5g聚(4-乙烯基吡啶)与25g甲醇混合,室温搅拌至聚(4-乙烯基吡啶)完全溶解;溶液搅拌均匀后,溶液搅拌均匀后,将3.96ml的12m盐酸逐滴加入到上述溶液;滴加完毕后,0℃下搅拌反应48h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

(3)取ti3c2相mxene纳米片0.2g分散在去离子水中,配制成5mg/ml浓度的分散液;氮气氛围下,向mxene纳米片分散液逐滴加入2wt%聚(4-乙烯基吡啶)盐水溶液10ml;滴加完毕后,室温下800rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂。

(4)取16mgmxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤便可快速实现固液分离,用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为37ppm,计算得到cr(ⅵ)的去除率为90%。

实施例3

(1)取8glif加入到100ml的9m盐酸中搅拌溶解;溶解完全后,加入5gti3alc2粉末,35℃下搅拌反应48h;反应结束后,经离心、(用去离子水)洗涤反复操作9次,再将离心产物用去离子水分散,超声处理2h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取5g聚(4-乙烯基吡啶)与50g甲醇混合,室温搅拌至聚(4-乙烯基吡啶)完全溶解;溶液搅拌均匀后,溶液搅拌均匀后,将3.96ml的12m盐酸逐滴加入到上述溶液;滴加完毕后,15℃下搅拌反应72h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

(3)取ti3c2相mxene纳米片0.1g分散在去离子水中,配制成10mg/ml浓度的分散液;氮气氛围下,向mxene纳米片分散液逐滴加入2wt%聚(4-乙烯基吡啶)盐水溶液10ml;滴加完毕后,室温下1000rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂。

(4)取16mgmxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤便可快速实现固液分离,用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为3ppm,计算得到cr(ⅵ)的去除率为97%。

实施例4

(1)取8glif加入到100ml的6m盐酸中搅拌溶解;溶解完全后,加入2.7gti3alc2粉末,40℃下搅拌反应24h;反应结束后,经离心、(用去离子水)洗涤反复操作6次,再将离心产物用去离子水分散,超声处理4h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取5g聚(4-乙烯基吡啶)与100g甲醇混合,室温搅拌至聚(4-乙烯基吡啶)完全溶解;溶液搅拌均匀后,溶液搅拌均匀后,将20.03ml1-溴己烷逐滴加入到上述溶液;滴加完毕后,60℃下搅拌反应72h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

(3)取ti3c2相mxene纳米片0.2g分散在去离子水中,配制成20mg/ml浓度的分散液;氮气氛围下,向mxene纳米片分散液逐滴加入2wt%聚(4-乙烯基吡啶)盐水溶液40ml;滴加完毕后,室温下600rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂。

(4)取16mgmxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤便可快速实现固液分离,用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为16ppm,计算得到cr(ⅵ)的去除率为84%。

实施例5

(1)取8glif加入到100ml的9m盐酸中搅拌溶解;溶解完全后,加入5gti3alc2粉末,35℃下搅拌反应48h;反应结束后,经离心、(用去离子水)洗涤反复操作10次,再将离心产物用去离子水分散,超声处理4h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取5g聚(4-乙烯基吡啶)与50g甲醇混合,室温搅拌至聚(4-乙烯基吡啶)完全溶解;溶液搅拌均匀后,溶液搅拌均匀后,将3.96ml的12m盐酸逐滴加入到上述溶液;滴加完毕后,15℃下搅拌反应96h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

(3)取ti3c2相mxene纳米片0.2g分散在去离子水中,配制成10mg/ml浓度的分散液;氮气氛围下,向mxene纳米片分散液逐滴加入2wt%聚(4-乙烯基吡啶)盐水溶液10ml;滴加完毕后,室温下1000rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂。

(4)取16mgmxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤便可快速实现固液分离,用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为7ppm,计算得到cr(ⅵ)的去除率为93%。

实施例6

(1)取8glif加入到100ml的6m盐酸中搅拌溶解;溶解完全后,加入3gti3alc2粉末,30℃下搅拌反应72h;反应结束后,经离心、(用去离子水)洗涤反复操作9次,再将离心产物用去离子水分散,超声处理2h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取5g聚(4-乙烯基吡啶)与50g甲醇混合,室温搅拌至聚(4-乙烯基吡啶)完全溶解;溶液搅拌均匀后,溶液搅拌均匀后,将7.92ml的12m盐酸逐滴加入到上述溶液;滴加完毕后,15℃下搅拌反应72h后,将反应液倒入大量无水乙醚中,沉淀物用无水乙醚浸泡三次,产物真空干燥,得到聚(4-乙烯基吡啶)盐。

(3)取ti3c2相mxene纳米片0.1g分散在去离子水中,配制成10mg/ml浓度的分散液;氮气氛围下,向mxene纳米片分散液逐滴加入2wt%聚(4-乙烯基吡啶)盐水溶液15ml;滴加完毕后,室温下1000rpm搅拌反应3h后,经离心、洗涤,产物真空干燥,得到mxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂。

(4)取16mgmxene纳米片/聚(4-乙烯基吡啶)盐复合材料吸附剂,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤便可快速实现固液分离,用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为12ppm,计算得到cr(ⅵ)的去除率为88%。

对比例1

(1)取8glif加入到100ml的9m盐酸中搅拌溶解;溶解完全后,加入5gti3alc2粉末,35℃下搅拌反应48h;反应结束后,经离心、(用去离子水)洗涤反复操作10次,再将离心产物用去离子水分散,超声处理4h,离心后真空干燥,得到ti3c2相mxene纳米片。

(2)取16mgmxene纳米片,浓度为100ppm的cr(ⅵ)(以k2cr2o7作为cr(ⅵ)源)水溶液20ml,在ph=5,25℃下以600rpm搅拌24h后,利用0.22μm滤膜过滤极易堵塞滤膜而使过滤困难缓慢(固液分离困难),用原子吸收分光光度计测定吸附后滤液中cr(ⅵ)的浓度,cr(ⅵ)的浓度为20ppm,计算得到cr(ⅵ)的去除率为80%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1