抗击穿和飞弧的铸塑树脂组合物的制作方法

文档序号:10475286阅读:457来源:国知局
抗击穿和飞弧的铸塑树脂组合物的制作方法
【专利摘要】本发明涉及一种绝缘体铸塑树脂组合物,至少具有树脂组分和固化组分,其中,树脂组分至少包括缩水甘油酯型环氧树脂,并且该组合物附加地至少包括咪唑类化合物。
【专利说明】
抗击穿和飞弧的铸塑树脂组合物
技术领域
[0001] 本发明涉及一种绝缘体铸塑树脂组合物,至少具有树脂组分和固化组分,其中树 脂组分包括至少一种缩水甘油酯型环氧树脂并且组合物附加地包括至少一种咪唑类化合 物。
【背景技术】
[0002] 目前由于电力越来越多地在分布式组织的能量源中产生,电能的可靠传输存在越 来越大的挑战。所产生的电力的分配在此基本上通过电开关设备来确保,其没有故障地运 行是稳定的电网的基本前提条件中的一个。这尤其适用于高压和极高电压设备,其对于尽 可能无损的电力传输仍然是选择的部件。该设备在此可以被实施为露天开关设备或气体绝 缘的开关设备,其中在气体绝缘的开关设备的领域内存在提高的安全性要求。这是由于这 种设备类型的组件密度比在上述露天开关设备中明显更高。
[0003] 设备结构的功能性的和安全性重要的主要组件是绝缘体(或绝缘子),其确保设备 的开关间隔(Schaltfeld)的各个母线可靠地彼此分开地,也就是电绝缘地延伸。已经得以 实现的材料在此是基于聚合树脂(绝缘树脂)的绝缘体,其在小的层厚度的情况下也具有极 低的导电率、良好的机械抗性和此外还良好的加工性能。
[0004] 在现有技术中例如描述了具有改善的机械和电气性能的组合物。由此DE 10 2009 053 253 Al例如描述了一种开关设备中的绝缘材料的绝缘树脂系统的组合物,其中绝缘树 脂系统包括环氧基树脂以及无机氧化物纳米颗粒。该组合物可以有助于改善机械和电气性 能。

【发明内容】

[0005] 本发明要解决的技术问题是,提供一种绝缘树脂组合物,其在保持良好的加工性 能的情况下具有改善的电气性能,并且特别地提高了由其制造的绝缘体的抗击穿和飞弧安 全性。此外,本发明要解决的技术问题是,提供一种由按照本发明的该绝缘树脂组合物制造 改善的绝缘体的方法。
[0006] 上述技术问题通过权利要求1的特征来解决。本发明的特别的实施方式在从属权 利要求中重现。
[0007] 令人惊奇地发现,绝缘体铸塑树脂组合物至少具有树脂组分和固化组分,其特征 在于,树脂组分包括至少一种缩水甘油酯型环氧树脂,并且该组合物附加地包括至少一种 咪唑类化合物,与现有技术的组合物相比获得明显改善的飞弧和击穿性能。按照本发明的 组合物由此能够有效地防止在绝缘设备部件之间的短路,并且以这种方式可以有助于电气 设备的更长的使用寿命和更高的故障安全性。由此,特别是在直流(DC)设备的运行中可以 有利地使用按照本发明的绝缘体组合物。不受理论的束缚,组合物的该改善的电气性能可 以归因于绝缘体组合物的改善的电荷衰减。如还特别在示例中所示的那样,按照本发明的 组合物例如可以使表面电荷明显更快地衰减。这些电荷可能由于组合物的高介电电阻而积 聚在绝缘体的表面上,这会导致绝缘体中的场增大并且随后导致击穿或飞弧。在此,与不具 有缩水甘油酯型环氧树脂和咪唑类化合物或仅具有树脂组分的树脂组合物相比,实现了更 快的电荷衰减。在此,在缩水甘油酯型环氧树脂的固化的范围内,通过咪唑类化合物与缩水 甘油酯型环氧树脂的直接化学作用,很可能能够实现改善的电荷衰减。不受理论的束缚,咪 唑类化合物可以与缩水甘油酯型环氧树脂反应,以形成至少部分导电的、高分子量化合物, 这些化合物以可控制的和改善的电荷和/或电压衰减而突出。由此,具有按照本发明的组合 物的绝缘体可以使表面电荷更快地衰减,这导致组合物的更小的电材料应力。由于电荷更 快地衰减,可以使绝缘体的介电老化减小,由此实现绝缘体的总体上更长的使用寿命。在此 可以实现这种改善,而无需损失组合物的其它机械性能。此外,利用按照本发明的组合物还 可以在保持故障安全性的情况下实现绝缘体的较小的结构高度。
[0008] 绝缘体铸塑树脂组合物在本发明的意义上是包括至少一种树脂组分和一个固化 组分的组合物。树脂至少在加工的部分范围内以能铸塑的形式,也就是低粘度的或液体的 形式存在,并且由此可以通过浇铸将其引入不同的模具。通常地,至少组合物的树脂组分和 固化组分相互反应,以形成三维网络。由此,组合物(树脂)在模具中硬化,然后可以脱模。当 按照本发明的绝缘体铸塑树脂组合物在20Γ下具有大于或等于10 12Ω/cm,优选大于或等于 1〇14 Ω /cm,此外优选IO16 Ω /cm的比体积电阻(体积电阻率,Volumen-Resistivillt)时,该 绝缘体铸塑树脂组合物具有绝缘体性能。大部分材料的体积电阻率被制成表或可以根据本 领域技术人员公知的方法来确定。此外,铸塑树脂组合物还可以具有本领域技术人员公知 的添加剂,诸如填充剂(玻璃纤维、玻璃颗粒、云母等)、粘合促进剂、止泡剂、催化剂、脱模剂 或减水剂(FliePmittel)。
[0009] 考虑本领域技术人员公知的缩水甘油酯型环氧树脂和相应的固化组分的组合作 为树脂组分和固化组分。可采用的缩水甘油酯型环氧树脂在此可以由有机多元酸和表氯 醇、β-甲基环氧氯丙烷、缩水甘油和/或类似的卤环氧化物的反应得到。有机多元酸在此可 以具有脂肪族的、脂环族的以及芳香族的基本骨架。不同的缩水甘油酯型环氧树脂的混合 物按照本发明也可以用在组合物中。作为固化组分对于本领域技术人员常用的是,例如酚 醛树脂固化剂、聚胺固化剂、多羧酸的酸固化剂等。特殊地,酚醛树脂固化剂可以包括苯酚 酚醛清漆树脂、双酚酚醛清漆树脂、聚对乙烯基苯酚。例如聚胺固化剂可以从包含二亚乙基 三胺、三亚乙基四胺、四乙烯五胺、双氰胺、聚酰胺胺、聚酰氨树脂、酮亚胺化合物、异弗尔酮 二胺、间苯二甲胺、间苯二胺、1,3_环己二甲胺(I,3_Bis(aminomethyl )cyclohexan)、Ν_氨 乙基哌嗪、4,4'_二氨基二苯基甲烷、4,4'_二氨基-3,3'_二甲基联苯基甲烷、氨苯砜等的组 中选择。特别地,一般也可以采用有机酸酐的组中的多羧酸固化剂。也可以采用不同的固化 剂的混合物。
[0010] 咪唑类化合物在本发明的意义上是在分子中具有至少一个如下形式的1,3_二氮 杂-2,4-环戊二稀单元(I,3_Diaza_2,4-cyclopentadien-Einheit)的化合物:
[0011]
[0012]其中化合物的扣取代的氢可以彼此独立地通过相同或不同的有机基R来取代。自 由基R可以彼此独立地从包含氢、卤素、乙醇、乙醛、羧酸、氰基、异氰基、未取代或取代的Cl-C30烷基、环烷基、烯基、环烯基、芳基、杂芳基的组中选择。
[0013] 在优选的实施方案中,组合物可以包括缩水甘油酯型环氧树脂,其中缩水甘油酯 型环氧树脂相应于以下的式(I):
[0014] R(COOCH2CHOCH2)n 式(I),
[0015] 其中n = 2、3或4并且R =取代的或未取代的C4至ClO烷基、烯基、环烷基、环烯基、杂 烷基(Heteroalkyl )、芳基、杂芳基。令人惊奇地证明,使用按照上述式的缩水甘油酯型环氧 树脂产生机械稳定的绝缘体,其还可以具有快速的电荷衰减。此外,固化反应快速地进行并 且模制品还可以简单地脱模。不受理论的束缚,通过选择具有多个环氧基和上面说明的取 代方式的缩水甘油酯型环氧树脂,在优选同时与咪唑类化合物相互作用的条件下,可以得 到树脂的有效交联。由此可以控制在绝缘体上的导电率和电荷衰减并且获得延长的使用寿 命以及击穿和飞弧安全性。导电率的调整在此尤其还可以呈现基本骨架R的空间 (s ter i s ch)扩展的功能。在此特别地,环状脂肪族的或芳香族的化合物可以产生优选的缩 水甘油酯型环氧树脂。
[0016] 在替换的实施可能性中,树脂组分可以相应于式(I),其中n = 2并且R是取代的或 未取代的C6烷基、烯基、环烷基、环烯基或芳基。特别地,环状C6-化合物可以作为树脂组分 与咪唑反应形成交联树脂,其具有特别有利的电气性能。这尤其可以是快速的电荷衰减,此 外其还可以具有极其小的温度依赖关系。这可以有助于特别高的故障安全性,特别是在气 体绝缘的开关设备的范围内。
[0017] 在组合物的另外的实施方式中,咪唑类化合物可以在2位置上通过Cl至C8烷基、烯 基、环烷基、环烯基、芳基取代。交联的缩水甘油酯型环氧树脂的改善的导电率的特别的部 分可以通过采用上述提到的咪唑化合物得出。特别地,虽然对交联树脂的机械参数的影响 很小并且保持有利的反应速度,但是所给出的在2位置的取代能够有助于在电荷衰减的显 著改善。不受理论的束缚,通过得到的H0M0/LUM0位置以及通过在2位置上取代的咪唑类化 合物的特别的空间性能可以高概率地得出该效果。
[0018] 在按照本发明的组合物的另外的实施中,咪唑类化合物可以至少在咪唑基本骨架 的两个位置上通过Cl至C8烷基、烯基、环烷基、环烯基、芳基来取代。此外,咪唑类化合物被 证明特别合适的是,其带有在咪唑基本骨架上至少两个取代基。该化合物能够以得到的绝 缘体的良好的机械强度、可控制的交联反应和良好的电气性能而突出。在咪唑基本骨架上 的更大的取代对于电气性能是不利的。
[0019] 在特别的实施方式中,特别地可以从包括2-甲基咪唑、2-^烷基咪唑、2-十七烷 基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑,2-苯基-4-甲基咪唑、1-苄基- 2-甲基咪唑、1-苄基-2-苯基咪唑的组中选择咪唑类化合物。该咪唑类化合物被证明非常适 合于明显提高绝缘体的使用寿命。
[0020] 在特别的实施方式中,特别地可以从包括1-氰乙基-2-甲基咪唑、1-氰乙基-2-十 一烷基咪唑、1-氰乙基-2-乙基-4-甲基咪唑、1-氰乙基-2-苯基-咪唑的组中选择咪唑类化 合物。该咪唑类化合物被证明非常适合于明显提高绝缘体的使用寿命。
[0021] 在特别的实施方式中,特别地可以使用从包括2-苯基-4,5-二羟甲基咪唑、2-苯 基-4-甲基-5-羟基甲基咪唑的组中选择的咪唑类化合物。该咪唑类化合物被证明非常适合 于明显提高绝缘体的使用寿命。
[0022] 在特别的实施方式中,特别地可以使用从包括的2-甲基咪唑啉、2-苯基咪唑啉的 组中选择的咪唑类化合物。该咪唑类化合物被证明非常适合于明显提高绝缘体的使用寿 命。
[0023] 此外,在组合物的附加的方面中,咪唑可以从包括2-甲基咪唑、1,2-二甲基咪唑、 2,4-二甲基咪唑的组中选出。以在咪唑基本骨架上的一个或两个甲基取代而突出的该咪唑 类化合物,示出了极其快速的电荷衰减,并且与纯的缩水甘油酯型环氧树脂相比仅示出了 变化不大的机械性能。作为结果得出,得到的绝缘体与标准绝缘体相比在电负荷的条件下 具有明显更尚的使用寿命。
[0024] 在替换的实施可能性中,组合物可以包含相对于树脂组分的重量而言浓度大于或 等于0.01%重量并且小于或等于10%重量的咪唑类化合物。该咪唑含量被证明特别适合于 能够有助于施加了电负荷的绝缘体的电荷衰减的加速。此外,该部分的咪唑类化合物仅不 太大地影响会导致交联的缩水甘油酯型环氧树脂的硬化反应,其仅不太大地影响其机械承 载能力。较小的咪唑含量不是按照本发明的,因为对导电率的效果可能太小。较高的浓度可 能导致较差的机械性能。优选地,相对于树脂组分的重量而言,可以包含浓度大于或等于 〇. 1 %重量并且小于或等于8%重量,还优选浓度大于或等于1.0 %重量并且小于或等于6% 重量的咪唑类化合物。
[0025] 在另外的特征中,可以从包括邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基纳迪克酸 酐、氢化甲基纳迪克酸酐、甲基六氢邻苯二甲酸酐、六氢化邻苯二甲酸酐、甲基四氢邻苯二 甲酸酐和其混合物的组中选择按照本发明的组合物的固化组分。从可能的固化组分的组 中,酸酐固化剂被证明是特别合适的。特别地,酸酐固化剂结合按照本发明采用的缩水甘油 酯型环氧树脂和咪唑类化合物可以产生机械稳定的、交联的树脂,其还具有改善的电气性 能。
[0026] 在本发明的另外的实施方式中,组合物基本上可以不含无机填料。令人惊奇地示 出了,特别是基本上不含另外的填料的组合物具有改善的电气性能。上面给出了可采用的 所有填料。当组合物具有小于10重量百分比,优选小于5重量百分比、进一步优选小于2.5重 量百分比的填料时,其基本上不含其它填料。在此特别地,填料还可以被理解为不属于缩水 甘油酯型环氧树脂、咪唑类化合物和固化剂的组的那些物质。各种材料的分析检测对于本 领域技术人员是公知的。
[0027] 此外按照本发明,用于制造铸塑树脂绝缘体的方法包括如下步骤:
[0028] a)预热由缩水甘油酯型环氧树脂和固化组分组成的混合物,
[0029] b)在搅拌的条件下添加咪唑类化合物和可选地另外的添加剂,
[0030] c)将来自于步骤b)的反应混合物脱气,
[0031] d)将来自于步骤c)的脱气后的反应混合物浇铸入模具中,
[0032] e)在加热作用的条件下固化浇铸的反应混合物。已经证明该方法对于制造机械稳 定的、具有改善的电气性能的铸塑树脂绝缘体是特别简单、低成本且可再现的。特别地,这 样制造的铸塑树脂绝缘体可以示出明显改善的电压/电荷衰减,其在电负荷的条件下可以 获得铸塑树脂绝缘体的更高的使用寿命。特别地在步骤a)的范围内,混合物可以被预热到 大于或等于l〇°C并且小于或等于HKTC的温度,优选被预热到大于或等于20°C并且小于或 等于80°C的温度,此外被预热到大于或等于20°C并且小于或等于60°C的温度。其可以易化 按照本发明的咪唑类化合物和可能的另外的添加剂的添加。此外,步骤c)中的混合物的脱 气可以在低压(Unterdruck)的条件下进行。由此可以避免在硬化的缩水甘油酯型环氧树脂 中产生气泡,其可以有助于绝缘体的改善的机械抗性。浇铸的反应混合物的固化特别地可 以在提高的温度的条件下在几小时内进行。优选地,温度在此可以大于或等于40°C并且固 化持续时间长于3h。这可以产生机械极其稳定且完全反应的缩水甘油酯型环氧树脂。
[0033] 此外在该方法的附加的实施中,在另外的方法步骤f)中硬化的绝缘体的表面粗糙 度可以被设置为大于或等于Iym并且小于或等于40μπι。与现有技术中提到的缩水甘油酯型 环氧树脂不同,由于按照本发明的绝缘体的改善的电气性能,还可以在不改变绝缘体的电 气性能的条件下执行表面处理。通常地,在现有技术的绝缘体上存在导电层,其源于交联处 理的污染和副产品。如果例如为了形成定义的表面粗糙度而去除该层,则这一般导致电气 性能变差。不受理论的束缚,在按照本发明制造的绝缘体中可以在不损失有利的电气性能 的条件下修改表面。这是因为绝缘体具有保持不变的导电率。上面给出的粗糙度范围在此 对于获得特别长的使用寿命被证明是特别有利的。这可能是由于特别有利的表面/体积比 率。表面粗糙度在此可以通过本领域技术人员公知的方法来调整。这例如是抛光、粗化、喷 砂、喷水剥皮法、激光等。此外优选地,固化的绝缘体的表面粗糙度可以设置为大于或等于2 μπι并且小于或等于20μπι。这可以有助于改善的击穿和/或飞弧安全性。
[0034] 附加地在按照本发明的方法的另一方面,在步骤e)中的反应混合物的硬化可以在 大于或等于50°C并且小于或等于200°C的温度下进行。特别地,在上面给出的温度范围内的 硬化步骤可以有助于有利的材料的机械和电气后处理(Nachbehandlung)。在此,不受理论 的束缚,尚未反应的组可以在之后反应,并且可以实现各个组分在绝缘体中的的更均匀的 分布。合适地,后处理步骤可以长于IOh、优选长于15h并且进一步优选长于20h。这可以产生 机械特别稳定的绝缘体。硬化的范围内的温度在此可以在总的时间段上是恒定或是变化 的。由此例如可以执行阶梯式的温度程序。例如可以考虑上升的或下降的温度斜率。优选 地,在上升的温度斜率的条件下,固化可以在大于或等于60°C并且小于或等于180°C、进一 步优选大于或等于75°C并且小于或等于170°C的温度范围内进行。
[0035] 此外在本发明的意义上涉及一种根据按照本发明的方法制造的绝缘体。根据按照 本发明的方法制造的绝缘体能够以改善的电气性能、特别是改善的击穿和飞弧安全性而突 出。该改善的电气性能在此可以在保持机械性能的条件下实现。这可以有助于绝缘体的更 长的使用寿命,其特别是在DC设备中的绝缘体的情况下可以导致使用寿命延长。
[0036] 此外按照本发明涉及一种按照本发明的绝缘体在电开关设备中的应用。优选地可 以在电开关设备中采用按照本发明的绝缘体。这尤其当在小的空间上聚集设备的多个母线 并且存在飞弧或击穿的较高危险时是具有优势的。在这些情况下绝缘体的改善的电气性能 可以有助于改善的设备安全性和使用寿命。
[0037] 在本发明的另外的方面中,可以在电开关设备中使用按照本发明的绝缘体,其中 开关设备是高压设备。优选地,按照本发明的绝缘体铸塑树脂组合物可以有助于高压设备 的改善的运行安全性。特别地在这些设备中存在较高的电绝缘体飞弧或击穿的风险,其通 过使用按照本发明的绝缘体铸塑树脂组合物可以被减小。特别地,按照本发明的绝缘体在 DC高压设备中可以有助于使用寿命延长。
[0038] 本发明的上面描述的性能、特征和优点以及怎样实现其的方式根据下面对结合附 图详细解释的实施例的描述来更清楚且更明确地说明。
【附图说明】
[0039] 下面对照附图详细解释按照本发明的绝缘体铸塑树脂组合物的电气性能。附图 中:
[0040] 图Ia示意性示出了用于对绝缘体表面进行充电的结构;
[0041] 图Ib示意性示出了用于测量绝缘体的表面电压的结构;
[0042]图2作为时间的函数示出了没有咪唑组分的铸塑树脂组合物在40°C时的电压下 降,
[0043] 图3作为时间的函数示出了具有2.4部分的咪唑的按照本发明的铸塑树脂组合物 在40 °C时的电压下降,
[0044] 图4作为时间的函数示出了具有1.2部分的1.2-二甲基咪唑的按照本发明的铸塑 树脂组合物在20°C时的电压下降,
[0045] 图5作为时间的函数示出了具有2.4部分的1.2-二甲基咪唑的按照本发明的铸塑 树脂组合物在20°C时的电压下降,
[0046] 图6作为时间的函数示出了具有2.4部分的2-乙基-4-甲基咪唑的按照本发明的铸 塑树脂组合物在40°C时的电压下降。
【具体实施方式】
[0047] 图Ia示出了通过电晕放电对样体表面进行充电的试验设计。示出了绝缘体样体 (Probenkdrper )(5),其具有圆柱形的几何结构并且位于试验台(4)上。栅格(3)处于样体 (5)上方。电压发生器(1)借助在其尖端具有针尖或极细的电线的棒形的探头(2),将电荷差 施加到样体(5)上。样体的厚度通常可以是2、5或IOmm并且样体直径可以处于40或80mm之 间。在调节的空气条件中在大气压力下(RH在10%与90%之间)对表面进行充电。在样体表 面上可获得的最大表面电压是3kV。
[0048] 图Ib示出了用于确定样体的表面电压的结构。示出了(圆柱形的)样体(5),其表面 电压通过连接到伏特计(6)的探头(7)来测量。通过重复测量,能够跟踪表面电压随着时间 的衰减。
[0049] 示例:
[0050] 示例1(比较示例)
[0051] 制造样体:
[0052] 4mm高并且8cm宽的圆柱形的样体由
[0053] 100重量份数的六氢邻苯二甲酸二缩水甘油酯和
[0054] 102重量份数的甲基纳迪克酸酐制造,
[0055]方法是将甲基纳迪克酸酐预热至60°C。向其加入预热至80°C的缩水甘油酯树脂。 将该混合物在真空条件下搅拌而脱气2分钟,然后将混合物浇铸入加热到80°C的模具。将混 合物借助固化程序(80 °C 2h-l 00 °C 2h-l 30 °C Ih-150 °C 12h)固化并且在冷却之后脱模。
[0056]对样体提供表面电荷,并且跟踪表面电荷随着时间的衰减(参见图2)。与具有咪唑 类化合物的样体相比,得出表面电荷的衰减明显更差。推断得出表面电荷在大约40000h之 后衰减,而在具有咪唑的按照本发明的组合物的情况下,发现明显更快的电荷衰减(推断大 约150-170h)。在按照本发明的绝缘体组合物中在大约50h之后已经获得大约90 %的电荷衰 减。
[0057] 示例 2
[0058] 制造样体:
[0059] 4mm高并且8cm宽的圆柱形的样体由
[0060] 100重量份数的六氢邻苯二甲酸二缩水甘油酯,
[0061 ] 102重量份数的甲基纳迪克酸酐和
[0062] 2.4重量份数的咪唑(基于缩水甘油酯树脂)制造,
[0063]方法是在60 °C下在搅拌的条件下溶解甲基纳迪克酸酐和咪唑。向其加入预热至80 °C的缩水甘油酯树脂。将该混合物在真空条件下搅拌而脱气2分钟,然后将混合物浇铸入加 热到80°C的模具中。将混合物借助硬化程序(80°C2h-100°C2h-l30°C Ih-150°C 12h)硬化并 且在冷却之后脱模。
[0064] 对样体提供表面电荷并且跟踪表面电荷随着时间的衰减(参见图3)。与没有咪唑 组分的样体相比,得出表面电荷的衰减明显改善。
[0065] 示例 3
[0066] 制造样体:
[0067] 4mm高并且8cm宽的圆柱形的样体由
[0068] 100重量份数的六氢邻苯二甲酸二缩水甘油酯,
[0069] 102重量份数的甲基纳迪克酸酐和
[0070] 1.2重量份数的1,2-二甲基咪挫(基于缩水甘油酯树脂)制造,
[0071] 方法是在60°C下在搅拌的条件下溶解甲基纳迪克酸酐和1,2_二甲基咪唑。向其加 入预热至80°C的缩水甘油酯树脂。将该混合物在真空条件下搅拌而脱气2分钟,然后将混合 物浇铸入加热到80°C的模具中。将混合物借助硬化程序(80°C 2h-100 °C2h-130°C lh-150°C 12h)硬化并且在冷却之后脱模。
[0072] 对样体提供表面电荷并且跟踪表面电荷随着时间的衰减(参见图4)。与没有咪唑 组分的样体相比,得出表面电荷的衰减明显改善。
[0073] 示例4
[0074] 制造样体:
[0075] 4mm高并且8cm宽的圆柱形的样体由
[0076] 100重量份数的六氢邻苯二甲酸二缩水甘油酯,
[0077] 102重量份数的甲基纳迪克酸酐,
[0078] 2.4重量份数的1,2-二甲基咪挫(基于缩水甘油酯树脂)和 [0079] 65重量百分比的氧化铝(基于缩水甘油酯树脂)制造,
[0080]方法是在60°C下在搅拌的条件下溶解甲基纳迪克酸酐和1,2_二甲基咪唑。向其加 入预热至80°C的缩水甘油酯树脂。将该混合物在真空条件下搅拌而脱气2分钟,然后将混合 物浇铸入加热到80°C的模具中。将混合物借助硬化程序(80°C 2h-100 °C2h-130°C lh-150°C 12h)硬化并且在冷却之后脱模。
[0081 ]对样体提供表面电荷并且跟踪表面电荷随着时间的衰减(参见图5)。与没有咪唑 组分的样体相比,得出表面电荷的衰减明显改善。
[0082] 示例5
[0083] 制造样体:
[0084] 4mm高并且8cm宽的圆柱形的样体由
[0085] 100重量份数的缩水甘油酯树脂,
[0086] 102重量份数的甲基纳迪克酸酐和
[0087] 2,4重量份数的2-乙基-4-甲基咪挫(基于缩水甘油酯树脂)制造,
[0088] 方法是在60°C下在搅拌的条件下溶解甲基纳迪克酸酐和2-乙基-4-甲基-咪唑。向 其加入预热至80°C的缩水甘油酯树脂。将该混合物在真空条件下搅拌而脱气2分钟,然后将 混合物浇铸入加热到80 °C的模具中。将混合物借助硬 150 °C 12h)硬化并且在冷却之后脱模。
[0089] 对样体提供表面电荷并且跟踪表面电荷随着时间的衰减(参见图6)。与没有咪唑 组分的样体相比,得出表面电荷的衰减明显改善。
[0090] 虽然本发明在细节上通过优选的实施例详细阐述和描述,但是本发明不受所公开 的示例的限制,并且本领域技术人员可以从中推导出其它方案,而不脱离本发明的保护范 围。
【主权项】
1. 一种绝缘体铸塑树脂组合物,至少具有树脂组分和固化组分,其特征在于,树脂组分 包括至少一种缩水甘油酯型环氧树脂,并且该组合物附加地包括至少一种咪唑类化合物。2. 根据权利要求1所述的组合物,其中,缩水甘油酯型环氧树脂相应于以下的式(I): R(COOCH2CHOCH2)n 式⑴, 其中n = 2、3或4并且 R=取代或未取代的C4至CIO烷基、烯基、环烷基、环烯基、杂烷基、芳基、杂芳基。3. 根据上述权利要求中任一项所述的组合物,其中,树脂组分相应于式(I),其中n = 2 并且R是取代的或未取代的C6烷基、烯基、环烷基、环烯基或芳基。4. 根据上述权利要求中任一项所述的组合物,其中,咪唑类化合物在2位置上通过C1至 C8烷基、烯基、环烷基、环烯基、芳基取代。5. 根据上述权利要求中任一项所述的组合物,其中,咪唑类化合物至少在咪唑基本骨 架的两个位置上通过C1至C8烷基、烯基、环烷基、环烯基、芳基来取代。6. 根据上述权利要求中任一项所述的组合物,其中,咪唑从包括2-甲基咪唑、1,2_二甲 基咪唑、2,4-二甲基咪唑的组中选出。7. 根据上述权利要求中任一项所述的组合物,其中,所述组合物包含相对于树脂组分 的重量而言浓度大于或等于0.01重量百分比并且小于或等于10重量百分比的咪唑类化合 物。8. 根据上述权利要求中任一项所述的组合物,其中,固化组分选自邻苯二甲酸酐、四氢 邻苯二甲酸酐、甲基纳迪克酸酐、氢化甲基纳迪克酸酐、甲基六氢邻苯二甲酸酐、六氢化邻 苯二甲酸酐、甲基四氢邻苯二甲酸酐和其混合物。9. 根据上述权利要求中任一项所述的组合物,其中,所述组合物基本上不含无机填料。10. -种用于制造铸塑树脂绝缘体的方法,包括如下步骤: a) 预热由缩水甘油酯型环氧树脂和固化组分组成的混合物, b) 在搅拌的条件下添加咪唑类化合物和可选地另外的添加剂, c) 将来自于步骤b)的反应混合物脱气, d) 将来自于步骤c)的脱气后的反应混合物浇铸入模具中, e) 在加热作用的条件下固化浇铸的反应混合物。11. 根据权利要求10所述的方法,其中,在另外的方法步骤f)中,固化的绝缘体的表面 粗糙度被设置为大于或等于lym并且小于或等于40μπι。12. 根据权利要求10或11所述的方法,其中,在步骤e)中的反应混合物的固化在大于或 等于50 °C并且小于或等于200 °C的温度下进行。13. -种根据权利要求10至12中任一项所述的方法制造的绝缘体。14. 一种根据权利要求13所述的绝缘体在电开关设备中的应用。15. 根据权利要求14所述的应用,其中,所述开关设备是高压设备。
【文档编号】H01B3/40GK105829390SQ201480068240
【公开日】2016年8月3日
【申请日】2014年12月2日
【发明人】G.斯维亚特科夫斯基
【申请人】西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1