一种利用气体水合物作为工质的制冷方法及空调制冷装置的制作方法

文档序号:3778088阅读:219来源:国知局
专利名称:一种利用气体水合物作为工质的制冷方法及空调制冷装置的制作方法
技术领域
本发明涉及制冷技术,尤其涉及一种利用气体水合物作为工质的制冷方法及空调制冷装置。
背景技术
气体水合物是一种外来气体或挥发性液体与水相结合而形成笼型晶体化合物。水分子形成晶格网络包围外来分子,晶格网络中水分子之间以氢键相互结合,而外来分子与水分子通过Vander walls力吸引。气体水合物的一个重要特点是它不仅可以在水的正常冰点以下形成,还可在冰点以上结晶固化。目前已经发现三种晶体结构,即结构I、II和结构H型水合物。常见气体水合物可以分为三大类,一类是制冷剂气体水合物,一类是天然气气体水合物,另一类是CO2气体水合物。
空气调节对人们生活起着重要的作用,然而空调耗能约占我国建筑耗能的50%还多,为了最大限度地节约能耗,开辟新能源的利用,同时为了保护环境,减少温室气体排放和臭氧层的破坏,空调技术的研究主要集中在开发新的环保型制冷剂和新的环保型空调技术。
空调技术发展的历史就是由如何满足社会经济和人民生活对室内环境不断提高的要求,以及如何最大限度地节约能耗,开辟新能源利用的历史。气体水合物在空调上的应用最初是作为蓄冷而提出。自从1982年John.Tomlison提出用制冷剂气体水合物作为蓄冷材料以来,国内外众多科研学者对气体水合物蓄冷技术进行了研究。其中美国橡树岭国家实验室和Keio大学机械工程系以及日本国家化学实验室的成就受世人瞩目。90年代我国开始研究制冷剂气体水合物蓄冷技术。中国科学院广州能源研究所和华南理工大学都进行了大量的制冷剂气体水合物蓄冷实验,获取了R141b、R134a、R142b等新型制冷工质及其混合工质的蓄冷特性、结晶过程和相平衡的基础数据,并建立了新型实用气体水合物蓄冷系统。现在,由于天然气水合物理论和技术的发展,水合物空调的发展和应用已经成为可能,水合物空调具有很大的优势,一是相变热大,能量密度高。水合物每摩尔的相变热通常是其他氟碳化合物制冷剂相变热的几倍(表1),如此高的相变热可以提高制冷剂的换热量,从而提高制冷系数。另一个就是能够降低压缩功率,水合物的形成(分解)压力和温度一般是成对数关系(附图2),如果选择合适的蒸发温度和冷凝温度,水合物生成和分解的压力差将很小,压缩机功率将大大降低。国外已经对水合物空调做了初步研究,已经提出了相应的系统和概念,可以预计水合物空调也将是空调技术的很好尝试具有很好的应用前景。但是由于水合物是固态,在输送过程中存在一定困难,另外就是水合物一般要求低温高压才能形成,利用水合物作为工质需要解决在较高温度能够形成水合物等问题,因此目前还没有出现成熟的产品。
表1不同制冷剂气体水合物性质比较

发明内容本发明的目的是克服现有技术中的不足,提供一种利用气体水合物作为工质的制冷方法。
本发明的另一个目的是提供一种利用气体水合物作为工质的空调制冷装置。
本发明利用水合物作为工质的制冷方法采用的主要技术方案是使用水合物作为工质进行热转换,由水合物生成放热,水合物分解吸热,循环过程通过浆状水合物(水合物和水的混合物)和气体/水的循环实现。
该技术方案包含以下步骤a)由压缩机压缩气体产生高压气体;b)高压气体在生成反应器(冷凝器)中和水反应生成气体水合物而放热;
c)浆状水合物通过膨胀阀减压后送入分解反应器(蒸发器);d)水合物在分解反应器(蒸发器)中分解成气体和水,同时吸热热量;e)分解的气体和水在气液分离器分离后,气体送入压缩机进行压缩,水用泵打入生成反应器(冷凝器)中完成循环。
本发明空调制冷装置技术方案如下所述空调制冷装置由分解反应器(蒸发器)、膨胀阀、压缩机、生成反应器(冷凝器)、气液分离器和水泵等组成。分解反应器(蒸发器)、膨胀阀、压缩机、生成反应器(冷凝器)、气液分离器和水泵等通过管道及阀门相连,管道中装有水合物制冷工质。其中压缩机、生成反应器(冷凝器)、膨胀阀、分解反应器(蒸发器)、气液分离器通过管道及阀门依次相连构成一个循环回路,生成反应器(冷凝器)、膨胀阀、分解反应器(蒸发器)、气液分离器、水泵通过管道及阀门依次相连构成另一个循环回路,分解反应器(蒸发器)直接接冷端供冷。生成反应器(冷凝器)直接接热端给室外放热。
所述空调制冷装置的工作原理与前述的利用水合物作为工质的制冷方法相同。工作时,由压缩机压缩气体产生高压气体,高压气体在生成反应器(冷凝器)中和水反应生成气体水合物而放热,浆状水合物通过膨胀阀减压后送入分解反应器(蒸发器),水合物在分解反应器(蒸发器)中分解成气体和水,同时吸热热量,分解的气体和水在气液分离器分离后,气体送入压缩机进行压缩,水用泵打入生成反应器(冷凝器)中完成循环。
本发明方法和空调制冷装置使用的作为工质的水合物包括烷烃(如丙烷即R290等)及其衍生物(如CH2F2即R32等)中能够生成气体水合物的物质、以及它们的混合物(例如甲烷+环戊烷、丙烷+环戊烷等)。
为了使制冷剂气体和水能够迅速生成,水中添加一定量的化学添加剂,例如SDS(十二烷基硫酸钠,浓度200-500ppm)、APG(烷基多苷,浓度为500-1500ppm)和次氯酸钙(浓度为0.01%-3%)等表面活性剂等。
为了能够减少水合物浆流动过程中的阻力,还可以适当添加一定量的减阻剂,例如聚环氧乙烷(浓度50-500ppm)和聚丙烯酰胺(浓度50-500ppm)等。
本发明与现有技术相比具有如下的显著优点和积极效果充分利用了水合物生成/分解的潜热大于汽化热和水合物生成/分解压差小等特点,比其他常规方法节能和高效。由于市场对空调需求很大,本空调系统有很大的发展应用前景。


图1是本发明空调制冷装置的结构示意2是气体水合物温度和压力相平衡图附图标记说明1热端;2生成反应器(冷凝器);3膨胀阀;4分解反应器(蒸发器);5冷端;6气液分离器;7水泵;8压缩机;F1、F2阀门。
C1甲烷;C2乙烷;C3丙烷;CH环己烷;CP环戊烷;MCH甲基环己烷具体实施方式
下面结合附图和具体实施方式
对本发明作进一步详细说明。
图1是本发明空调制冷装置的结构示意图。水合物制冷系统由分解反应器(蒸发器)4、膨胀阀3、压缩机8、生成反应器(冷凝器)2、气液分离器6和水泵7等组成。分解反应器(蒸发器)4、膨胀阀3、压缩机8、生成反应器(冷凝器)2、气液分离器6和水泵7通过管道相连,管道中装有水合物制冷工质。分解反应器(蒸发器)4直接接冷端5供冷。生成反应器(冷凝器)2直接接热端1给室外放热。工作时,由压缩机8压缩气体产生高压气体,高压气体在生成生成反应器(冷凝器)2中和水反应生成气体水合物而放热,浆状水合物通过膨胀阀3减压后送入分解反应器(蒸发器)4,水合物在分解反应器(蒸发器)4中分解成气体和水,同时吸热热量,分解的气体和水在气液分离器6分离后,气体送入压缩机8进行压缩,水用泵7打入生成反应器(冷凝器)2中完成循环。
为了减少水合物生成过冷度和快速生成水合物,可以添加一定量的化学添加剂,例如十二烷基硫酸钠(SDS)。
图2是气体水合物温度和压力相平衡图。图中常规气体水合物的在较高温度时需要很大的生成压力,通过复配后可极大地降低生成压力。例如环戊烷的使用,使甲烷的相平衡压力由12MPa(17℃)降低到0.8MPa。对于本水合物空调的实现,需要选择比较平缓的相平衡段作为空调的工作段,如图2℃-17℃的甲烷+环戊烷体系,2℃作为蒸发温度(压力0.02MPa,压力需小于相平衡压力),17℃作为冷凝温度(压力1.0MPa,压力需大于相平衡压力),在实际应用中,17℃的冷凝温度还很低,需要通过复配来提高冷凝温度,例如提高到35℃。
在大型空调系统中,可使用双级制冷系统来达到应用条件,例如使用常规空调使温度降到20℃以下,再利用本专利提供的装置降到所需温度。双级制冷系统的使用同样可以节省一部分能量。
实施例1如附图1所示,水合物制冷系统12由分解反应器(蒸发器)4、膨胀阀3、压缩机8、生成反应器(冷凝器)2、气液分离器6和水泵7等组成。分解反应器(蒸发器)4、膨胀阀3、压缩机8、生成反应器(冷凝器)2、气液分离器6和水泵7通过管道相连,管道中装有水合物制冷工质。分解反应器(蒸发器)4直接接冷端5供冷。生成反应器(冷凝器)2直接接热端1给室外放热。工作时,由压缩机8压缩气体产生高压气体,高压气体在生成反应器(冷凝器)2中和水反应生成气体水合物而放热,浆状水合物通过膨胀阀3减压后送入分解反应器(蒸发器)4,水合物在分解反应器(蒸发器)4中分解成气体和水,同时吸热热量,分解的气体和水在气液分离器6分离后,气体送入压缩机8进行压缩,水用泵7打入生成反应器(冷凝器)2中完成循环。
在该实施例中,采用HFC-32作为水合物制冷工质,添加剂为十二烷基硫酸钠(SDS),浓度300ppm。设压缩机气体流量为100kg/h,压缩机功率5.3kW。冷凝器中水合物生成工况为25.5℃/1.66MPa,蒸发器中水合物分解工况为5℃/0.034MPa,膨胀阀功率0.3kW,浆状水合物中含水合物394kg/h、水132kg/h和气11kg/h。水泵水流量为393kg/h,功率为2.08kW。通过计算,总输出冷量为62.2kW,则COP为8.2。
空调系统中各部件都是比较成熟的公知技术,不再具体介绍。
实施例2如附图1所示,水合物制冷系统12由分解反应器(蒸发器)4、膨胀阀3、压缩机8、生成反应器(冷凝器)2、气液分离器6和水泵7等组成。分解反应器(蒸发器)4、膨胀阀3、压缩机8、生成反应器(冷凝器)2、气液分离器6和水泵7通过管道相连,管道中装有水合物制冷工质。分解反应器(蒸发器)4直接接冷端5供冷。生成反应器(冷凝器)2直接接热端1给室外放热。工作时,由压缩机8压缩气体产生高压气体,高压气体在生成反应器(冷凝器)2中和水反应生成气体水合物而放热,浆状水合物通过膨胀阀3减压后送入分解反应器(蒸发器)4,水合物在分解反应器(蒸发器)4中分解成气体和水,同时吸热热量,分解的气体和水在气液分离器6分离后,气体送入压缩机8进行压缩,水用泵7打入生成反应器(冷凝器)2中完成循环。
在该实施例中,采用甲烷+环戊烷(相平衡见附图2)作为水合物制冷工质,添加剂为十二烷基硫酸钠(SDS),浓度300ppm。设压缩机气体流量为100kg/h,压缩机功率5.8kW。冷凝器中水合物生成工况为20.5℃/1.8MPa,蒸发器中水合物分解工况为5℃/0.054MPa,膨胀阀功率0.3kW,浆状水合物中含水合物394kg/h、水132kg/h和气11kg/h。水泵水流量为393kg/h,功率为2.08kW。通过计算,总输出冷量为62.2kW,则COP为7.6。
权利要求
1.一种利用气体水合物作为工质的制冷方法,包括以下步骤a、由压缩机压缩气体产生高压气体;b、高压气体在生成反应器(冷凝器)中和水反应生成气体水合物而放热;c、浆状水合物通过膨胀阀减压后送入分解反应器(蒸发器);d、水合物在分解反应器(蒸发器)中分解成气体和水,同时吸热热量;e、分解的气体和水在气液分离器分离后,气体送入压缩机进行压缩,水用泵打入生成反应器(冷凝器)中完成循环。
2.如权利要求1所述的利用气体水合物作为工质的制冷方法,其特征在于所述水合物为烷烃及其衍生物中能够生成气体水合物的物质以及它们的混合物。
3.如权利要求1所述的利用气体水合物作为工质的制冷方法,其特征在于步骤b中在水中添加少量化学添加剂。
4.如权利要求3所述的利用气体水合物作为工质的制冷方法,其特征在于所述化学添加剂为以下表面活性剂之一十二烷基硫酸钠、烷基多苷、次氯酸钙。
5.如权利要求1所述的利用气体水合物作为工质的制冷方法,其特征在于步骤c中在浆状水合物添加少量减阻剂。
6.如权利要求3所述的利用气体水合物作为工质的制冷方法,其特征在于所述减阻剂为以下之一聚环氧乙烷、聚丙烯酰胺。
7.一种利用气体水合物作为工质的空调制冷装置,包括分解反应器(蒸发器)、膨胀阀、压缩机、生成反应器(冷凝器)、水泵,其特征在于还包括气液分离器,分解反应器(蒸发器)、膨胀阀、压缩机、生成反应器(冷凝器)、气液分离器和水泵等通过管道及阀门相连,管道中装有水合物制冷工质;其中压缩机、生成反应器(冷凝器)、膨胀阀、分解反应器(蒸发器)、气液分离器通过管道及阀门依次相连构成一个循环回路,生成反应器(冷凝器)、膨胀阀、分解反应器(蒸发器)、气液分离器、水泵通过管道及阀门依次相连构成另一个循环回路;分解反应器(蒸发器)直接接冷端供冷,生成反应器(冷凝器)直接接热端给室外放热。
全文摘要
本发明提供了一种利用水合物作为工质的制冷方法及空调制冷装置。制冷方法步骤依次为产生高压气体;生成气体水合物;浆状水合物通过膨胀阀减压后送入分解反应器(蒸发器);水合物分解成气体和水,同时吸热热量;气体和水在气液分离器分离后分别送入压缩机或生成反应器(冷凝器)中完成循环。空调制冷装置包括分解反应器(蒸发器)、膨胀阀、压缩机、生成反应器(冷凝器)、水泵、气液分离器,通过管道及阀门相连,管道中装有水合物制冷工质;分解反应器(蒸发器)直接接冷端供冷,生成反应器(冷凝器)直接接热端给室外放热。本发明节能、高效,有很大的发展应用前景。
文档编号C09K5/16GK1844801SQ20061007505
公开日2006年10月11日 申请日期2006年3月30日 优先权日2005年12月30日
发明者樊栓狮, 李栋梁, 梁德青, 杨向阳, 唐翠萍, 赵翔勇 申请人:中国科学院广州能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1