气化物质气化和/或气体转化方法和装置以及实施该方法的高温换热器的制作方法

文档序号:5114889阅读:300来源:国知局
专利名称:气化物质气化和/或气体转化方法和装置以及实施该方法的高温换热器的制作方法
技术领域
本发明涉及添加气化剂使液体和/或细粒固体气化物质气化和/或气体转化的方法。
本发明还涉及实施该法的装置以及高温换热器。
在将细粒气化物料气化和/或转化含二氧化碳气以提供含一氧化碳气的已知法(见GB №。744 742)中,反应器中供给化学反应热,其中采用反应器外加热并闭环流通的细粒载热颗粒。逆流传送颗粒的情形下,试图使反应器中达到良好的粒料分布并因此达到粒料与气化物质间的良好传热,其中反应器水平放置并绕其纵轴转动。到达反应器底的物料会旋转而提升起来,而后再于重力作用下落到反应器底。这种设计的目的在于使反应器内部处于粒料作用之下,方式是如同其中进行细流,从而达到良好的换热效果。对并流粒料而言,已提出将其从立式反应器上部传送过细粒固体气化物质层,而后到达反应器底部,再与可能形成的任何灰份一起排出。
粒料由金属或其氧化物组成,粒径约1-5mm。由粒料带出的任何灰份在粒料循环到加热器之前要分离出来,如过筛或磁性分离灰份。用以加热粒料的加热器同样包括绕其纵轴转动的加热圆筒,向加热器供热方式不作详细讨论。加热器中加热的粒料在其从反应器经焦化装置或空气预热器排出之后再送入反应器,形成闭合回路。气化尘粒物质时,可假设反应器中有浮动情形,方式不作进一步说明。
转动反应器和转动加热器的应用意味着实施该法的开支很大。还要求相应的开支来构造和维护实施该法的装置。另外,还不能保证与气化物质充分混合,无论是粒料细流经过转动反应器中的气化物质时,还是转动反应器中的气化物料层受下流粒料作用时,均是如此,因此换热效率相当低。
在含CO2和H2O的气体转化和含烃气体转化而提供H2和CO含量高的还原气的已知法中(见DE №。2 947 128),传热介质为可流化耐热粒料,如氧化铝,粒径50-500μm,其中对液体或固体气化物质没有限制。为转化气体,闭环流通粒料先在加热器和燃烧室中吸收燃烧室中产生的燃烧气热。为此,粒料保持在其与燃烧气形成的流化床中,加热器和燃烧室中均是在炉栅上形成流化床。在这种情况下,粒料经下流管从加热器进入燃烧室,再经另一下流管进入燃烧室下的底室中。底室经传送管与反应器上部相连,其中在待转化气形成的流化床中格栅上部收集粒料。反应器中形成的流化床同样由下流管相连。为防止反应器中产生的还原气流入底室或燃烧室,传送管中设有双作用阀,可交替开闭。双作用阀一方面使粒料断续送入反应器,另一方面意味着实施该法的装置结构和操作均相当昂贵,并且磨损严重,因此出故障的可能性增大。
本发明目的是开发一种通用方法,其效益高,结构简单,操作简便可靠,其中可使粒料吸热并将热传给反应器中的气化物质和/或待转化气体和气化剂。本发明另一目的是开发实施该法的通用装置,包括高温换热器,其结构相当简单,耐磨并且操作可靠,可高效率换热。
实现本发明目的的方法及设备细节如以下详述。
事实上,加热器中至少一块格栅上粒料和燃烧气形成流化床,因此在加热器中使粒料与燃烧气充分混合,达到良好换热。粒料换热或加热到1250℃的必要温度在加热器中的流化床中进行,加热器下部为燃烧室,其中燃烧气温度1350-1500℃。本发明中加热器和燃烧室加热的粒料经物流传送管从燃烧室进入反应器上部。经过物流传送管的物料形成了一种密封,这可防止反应器中产生的成品气流通。因此,在开支少,磨损量小并且操作可靠的情况下,本发明可防止成品气通流,其中又不需要例如提供在该法操作过程中作为密封元件而交替开闭的双作用阀。
进入反应器的粒料与气化物质和/或待转化气体一起形成大量流化床,数量与格栅板数量一致。这可保证反应器达到良好的换热,从而提高了该法效率。
粒料经过物流传送管的量优选是可调,因此可仅通过改变送入反应器的粒料量并进而改变热量而简单地影响操作过程。
还已发现可有效地将固体气化物质送入进料或入口室,其中由载气带进反应器,其中经至少一根进料管。这保证了气化物质以简单而有效的方式基本上均匀地分布在反应器中形成的流化床中,从而达到良好的换热。
这方面,优选的是让流化床在进料室旁的反应器底上部顺序形成,其中采用一块或多块格栅。这样可达到迅速而完全地进行化学反应所需条件,达到气化或转化效果,并且由粒料均匀加热,效果很好。因此可迅速而完全地完成气化或转化所需混合,其中将粒料与气化剂以及传热和输送物料的物质和/或转化气混合。
在优选实施方案中,结块粒料和/或粘灰粒料经可关闭排料管从燃烧室中去除。这可简单地使再也不能用来形成流化床的粒料按要求从粒料回路中去除。因此可简单地提高该法的效率以及操作可靠性。
在另一优选实施方案中,经调节气嘴将调节气,如惰性气送入与物流传送管开口邻近的部分,以便利用喷射作用而提高物流传送管的流通速度。因此,这样改变物流传送管流通速度即可简单地影响反应器供热并进而影响该法操作过程。
可用的固体气化物质为细粒沥青煤,褐煤,泥煤,炭或生物物质和/或可用液体气化物质为轻质或重质烃和醇。可用气化剂为含H2O和CO2的物质,如含水蒸汽的气体,含CO2的废气,如高炉煤气等。
可用待转化气为气态烃,如天然气。
为有效进行本发明方法,可有效地使燃烧室中的燃烧气达到的1350-1500℃。
还已发现可有效地将水蒸汽直接加入反应器而作为气化剂使用。这会使该气化剂在反应器中良好分布,而这又是有效气化的必要条件。
优选在反应器中形成高压,高压是相对加热器或空气预热器而言的。高压可简便地保证无含氧热燃烧气从燃烧室进入反应器,因为这样的气体会燃烧,操作不安全。而且,还可保证预热的燃烧气不致于流入反应器。
为实现本发明方法,已发现可采用基本上球形的粒料,直径约0.5-3mm。粒料优选包括氧化物,例如氧化铝。
在实施本发明方法的装置中,加热器,燃烧室和反应器均基本上立式设置。这可简便地保证粒料在其重力作用下落入各容器之中,因此无需使诸如加热器或反应器转动即可传送粒料。而且,各反应器适当布置,即可使粒料在其重力作用下在各容器间传送。
事实上,本发明中加热器在其紧邻的燃烧室之上并且内设至少一块格栅,上部有粒料分布器,这可简便地保证加热器中均匀分布的粒料在其重力作用下进入燃烧室。在该方案中,在远离燃烧室的区域格栅用高品质钢制成,而紧邻燃烧室的格栅则用陶瓷件制成,为的是承受燃烧气高温。为了有效地在格栅上形成高约100mm的薄流化床层,优选使格栅具有基本上平的表面,而且在出现热膨胀之后也能基本上保持形状。为此,可使陶瓷件相互咬合并且相互支撑和/或用弹簧支撑在加热器外壁上。用陶瓷或高品质钢制造格栅还意味着格栅磨损量很小,即使形成流化床并有粒子高速流过,也是这样。
事实上,沿燃烧室周边分布的燃料喷嘴布置在燃烧室的底部,而沿燃烧室周边的燃烧空气喷嘴安装在此下方,这样保证了生成的燃烧气的分布并促使粒料在燃烧室与燃烧气形成流化床层而流动。
按照本发明,物流传送管的进口孔布置在燃料喷嘴区。这样的布置保证了足够的粒料连续地从在燃烧室形成的流化床层进入到物流传送管,并在其中形成对在反应器中产生的气体的密封,且带有足够的热量到反应器。为了进一步促进粒料输入到物流传送管,进口孔也可以是逐渐放大的漏斗形,至少在部分区域希望是这样的结构。
按照本发明,分布颗粒的分布器以一定间隔与物流传送管出口相联,该孔伸至反应器上部。分布器(如由隔板制成)可使进入到反应器的热粒料均匀分布。
按照本发明,与反应器相联的进料或加料室由至少一根加料管与反应器联接,下部进料室联有输送气体管,上部进料室布置在下部进料室的上方,由一多孔段将其隔开,上部进料室联有气化物料管。按照简单的方式,这样的布置对进入反应器的固体气化物提供了必须的条件,进入反应器后迅速展开并以大体均匀的方式在反应器中形成含粒料的流化床。
在优选的实施例中,分布器是与物流传送管相联的孔板和/或由出口孔或孔板提供的分布板。孔板的设置保证了从出口孔流出的粒料分成流过孔板的大部分和分散的小部分。这样保证了粒料在反应器上部的良好分布。这一分布可由安置来对流过孔板的大部分粒料施加作用的分布板进一步改进。
在优选的实施例中,至少一个联到控制气管线上的控制喷嘴与物流传送管区域相联,它与出口孔相邻。通过适当的供给作为控制气的气体如惰性气体,通过在物流传送管中产生的喷发效果,有可能以简单的方式改变流经物流传送管的粒料的总输入量以期影响本方法的操作方式。
在加热器及反应器中,换热在粒料和流化床的高温气体之间进行。因此,加热器和反应器是高温换热器,它可通过其相当简单的格栅、耐磨和可靠操作结构而成为高效率换热器。这一高效换热器不仅可用作本发明装置的一部分也可以通用的方式使用。
本发明优选的装置可参照本发明操作示意图来描述,这些示意图包括

图1给出了实施本方法的装置,图2是格栅的纵剖面图,图3是图1格栅部分的平面图,
图4是图2和图3格栅支撑元件图,图5是格栅罩件沿图3中Ⅴ-Ⅴ线剖开的纵剖面图,图6是罩件的平面图,图7是沿图6Ⅶ-Ⅶ线剖开的罩件纵剖面图,图8示出了流经格栅的粒料输入总量与气速的关系,图9是图1所示装置的燃烧室下部和反应器上部的剖面图,和图10是反应器下部和与图1和2所示的装置相联的进料室的剖面图。
图1所示的是实施本发明方法的装置,该方法利用气化剂气化液体和/或细粒固体气化物质和/或转化气体,该装置包括基本与设备中线垂直的反应器1。安置在反应器1上方的是呈容器形状的加热器5,在其下部是燃烧室3。这样在加热器5和燃烧室3中被加热的热载体粒料以如下所述的方式进入反应器1,而物流传送管7从燃烧室3的下部延伸至反应器1的上部(见图9)。
为了供给和充装气化物,该装置包括一储存器(未示出),从该储存器例如固体、细粒度气化物以计量的方式加到布置在反应器下方的进料室11中,它由多根进料管9与反应器1的下部相联。所列举的实施例有7根进料管9,其中图10示出了一排带有3根进料管9的示意图。
安置在反应器1下方的是空气预热器13,它通过弯管15联到反应器1上。与燃烧室3和加热器5相对应,反应器1和空气预热器13皆呈容器形并固定在17所示的支撑框架上。
支撑框架是钢结构形式且有例如四根竖架,图1示出了正面两根19和21。就一定高度的不同位置,竖架19和21与横梁23连在一起。支撑框架17固定在地基18上,在此不详述其方式。
从图9可看出,以两个相邻水平面布置在燃烧室下部并沿燃烧室3周边分布的是加燃料的燃料喷嘴25。按这样的布置,安置在一个平面的燃料喷嘴25被布置成与安置在相邻平面的燃料喷嘴在周边方向上有代替关系。燃烧空气喷嘴26被安置在燃料喷嘴25的下方并与其相邻且也沿周边分布并处于一个平面上。燃料喷嘴25和燃烧空气喷嘴26在周边上分布,在该情况下,燃烧空气喷嘴26与每一个燃料喷嘴25相连。燃料喷嘴25和燃烧空气喷嘴26每一个都按同样的方式布置成沿径向分布并穿过燃烧室3的壁进入其内。按这样的布置,喷嘴25,26分别有一个向下倾斜的、径向向内的延伸端25′和26′。
各种性能的燃料都可通过燃料喷嘴25连续供给燃烧室3。当装置以火焰炉或直接降压装置使用时,此时,可以如燃烧生成的废气。然而也可燃烧液体燃料、细粒度煤、炭生化物料。燃烧空气在空气预热器13中预热并从这里通过燃烧空气管13进入燃烧室3。管31与环形燃烧室31′联通,它是由燃烧室3的外壁3′和与外壁相对并与之有一定间隔的内壁32形成的。两壁3′和32有着漏斗形结构指向燃烧室3的底部的园锥结构。为了使燃烧空气喷嘴26均匀供气,它们都开向环形室31′。由所供给的燃烧空气已预热,热的燃烧气可以在燃烧室中产生约1350℃和1500℃之间的高温。以可按适当方式测定的速度流动的燃烧气从燃烧室3进入到加热器5,它由其上端气体出口33离开时温度在优选的实施例中约350℃。这些废气也可以另外的预热器(未示出)中使用,例如用于生产作为气化剂的蒸汽,或用于干燥固体燃料,随后可进入废气净化装置(未示出)。
在该情况下,加热器15被34a至34e的5个基本上水平延伸格栅再划分,按这样安置,一定间隔相邻的格栅基本相同。加热器5和燃烧室3用难熔材料包覆,也可用水冷壁元件。
与从燃烧室3产生进入到加热器5的呈逆流流动关系的热载体颗粒由分布器41供给,它被安置在气体出口33的下方和格栅34e的上方。含有硬的基本上耐磨的材料如氧化铝的粒料由输送管43加到分布器,输送管43基本上以垂直方向从框架17底部延伸。粒料由气动输送设备40加到输送管43,前者可通过鼓风机的压缩端54(未示出)产生的压缩空气供给。对粒料也可以借助例如输送活塞提供的承载带或螺旋输送来输送。
通过有多根分布管或以星状结构延伸的板的分布器41,粒料将基本均匀地加到加热器5中,颗粒的直径在约0.5mm和3mm之间,且基本上呈球形,其中通过适当的粒化操作可保证颗粒不是球形而星扁平形的比例很小。为了高效地将热量从燃烧器供给颗粒,可将颗粒用燃烧气在一个或多个34a到34e的格栅流态化以在其上方形成约100mm高的流化床。球形颗粒特别适合形成这种类型薄的流化床。颗粒与燃烧气的密切接触效果,在格栅34a到34e上方产生流化床,使得颗粒很好地吸收热量,这样当由分布器41供给的颗粒起始温度约为200℃时,以在每一个流化床层较短的停留时间(约1至2分钟)和较短的经过加热器5的时间就可被加热到约1250℃。
颗粒可从格栅34e、34d、34c、34b之一进到与加热器5的分别相邻的区域,这由下层格栅确定,或由与34a到34e的各个格栅相联的多根物流传送管37(未示出)从格栅34a到燃烧室3。这将在格栅结构部分描述。
颗粒的进一步加热可直接在燃烧室中通过其中产生的温度约在1350℃和1500℃之间的燃烧气进行。所述的燃料喷嘴25和燃烧空气喷嘴26的设置使在燃烧室3中产生的燃烧气的流动是流动床层式其中包含了在燃烧室3中基本上所有的颗粒。在燃烧室3中形成的流化床属于沸腾或鼓泡流化床,其中其密度比较低且其中颗粒急剧运动。除了提供燃烧气和颗粒间的良好传热之外,借助与燃料喷嘴26、燃烧空气喷嘴25和燃烧室壁3′的接触,在燃烧室中形成的流化床层也防止颗粒粘着灰尘或沉降这类其它的可能性。
为了在加热器5的格栅34a到34e上方形成薄的流化床,它们必须有基本扁平的表面。在加热器5的上部和其较冷区,可以使用高级钢,它有足够高的耐热性和耐磨性。在温度高达约1250℃的加热器5的下部区域,例如格栅34a,34b最好由耐热陶瓷制成。在这一方面人们发现最好使用六边形陶瓷元件,它们彼此相对支撑且彼此有相对预应力,通常借助弹簧作用到加热器5的外壁,这样可补偿热膨胀效应。按这样的方式,有可能保证即使在受热条件下,格栅仍维持其平直形式或水平位置。每一个元件至少有一个能保证燃烧气流动的通孔。
按照本发明,每一个陶瓷元件都是两部分结构,它包括各个由陶瓷制成的支撑元件35,35′,35″和35′′′(图2和4)和各个与支撑元件相联的罩件36′,36″(图3和5)。
从图4可见,支撑元件35到35′′′是三棱形结构,它有六边形底表面和一个中心通孔351。为了联结相邻的支撑元件35到35′′′,侧壁彼此相邻交替地装有固定凸出部352和固定凹槽353,它们基本呈水平并彼此相隔一定间隔。以适当方式倾斜延伸的侧表面在固定凸出物352和固定凹槽353,这样可维持相互支撑,支撑元件35′到35′′′的固定凹槽353可以简单的方式接受相邻支撑元件的固定凸出部353,而这些支撑元件的固定凸出部352可依次嵌入相邻支撑元件的固定凹槽353。按这样的方式,多根支撑元件35′到35′′′的布置给出了如图1所示的格栅34a到34d之一的支撑结构。如果格栅34e不是由高品质钢制成,可按此处所述的与格栅34a到34d相同的方式制造,也可是设备其它部分的格栅,如在反应器1中。
另外,正如从图2可见,不同高度的支撑元件应这样布置,使最短的支撑元件安置在中心区域。然后它们以径向向外的方向按与支撑元件35′,35″和35′′′基本同心区域相互联接,各种高度的呈递增结构,其中所有的支撑元件35到35′′′布置得使它们上端面处于同一个平面。不同长度的支撑元件35到35′′′这样的布置对格栅支撑部分呈拱顶结构,它们具有了良好的耐负荷性能并降低了重量。对于支撑在容器壁354上的格栅耐支撑部分,在此处为加热器5,径向向外布置的支撑元件35′′′如图2所示延伸至壁354的加固设施里,加固设施用难熔材料355加衬里、毗邻的径向向外的支撑元件35′′′是与此共操作的中间元件356且从整体上提供了大体圆柱周向表面。这可由适宜的壳状结构钢板357联结,它通过弹簧358而使其在径向向内有预应力,该弹簧以确定的距离沿组件的径向分布。弹簧358可由多根相互联结的片簧或适宜结构的螺旋簧制成。弹簧358负荷着基本均匀地有径向向内力的支撑元件35,35′,35″和35′′′。这样,相邻的固定元件35,35′,35″和35′′′彼此压紧,对固定凸出部352和凹槽353适当地相互嵌入。事实上,由于借助弹簧358的预应力使各个支撑元件35,35′,35″和35′′′基本均匀地相互压紧,这样由于温差而引起容器壁354和各个支撑元件35,35′,35″和35′′′的尺寸变化可用简单和可靠的方式补偿。这样保证了在温度波动时不会导致由于局部应力集中而引起的破裂,而同时这样的布置也应保证如当各个格栅冷却时,相互相邻的支撑元件35,35′,35″和35′′′不松动。这样也可保证格栅具有足够稳定的形状。
事实上,各个支撑元件35到35′′′彼此的区别仅仅在于它们的高度不同,这对于由陶瓷制成的支撑元件,可使用在基础构件上有相同的形状支撑元件。支撑元件35到35′′′的六角结构可使开孔351有相当大的直径,这样使支撑元件有相当薄的厚度并降低了重量。按这样的方式所有开孔351的面积占格栅面积的50%以上。因此,对格栅刚性组件在重量可节省70%到90%之间。
对于按本发明制作的从支撑元件35到35′′′和有最低高度约15Cm的支撑元件35和最大高度约40Cm的支撑元件35′′′的格栅,发现足以提供满足有关要求的刚度,例如借助弹簧358可将预应力约2KP/Cm2施加在外周边。为实施本方法,对于在某一位置产生温升并导致热膨胀效应影响支撑元件35到35′′′,发现在预应力均匀分布增至约5KP/Cm2特别好。预应力必须低于难熔材料所规定的压力极限。当难熔材料保持在基本均匀的压力下,在冷却期间基本可避免出现裂纹。
为了在格栅上形成流化床,格栅表面必须平直,罩件36′,36″设置在格栅载荷部分的顶部,它由上述对支撑元件35到35′′′布置而形成。另一个方面,与每一个支撑元件35到35′′′相连的是各个分别有相同六边形和尺寸的罩件36′和36″,其中每一个具有大体平板平直结构并处于支撑元件35到35′′′角部所提供的支撑凸出部359上。从图5,6和7可看出,罩件36′,36″有交替的侧缘361和362,它们以不同的倾斜角倾斜伸出。另一方面侧缘361形成一个从上可进入的倾斜面,而侧缘362也形成一个从上可进入的倾斜面并形成凹进结构。由于相邻罩件36′和36″相互啮合的侧缘361和362,保证了罩件处于支撑元件35到35′′′上的罩件36′和36″之间的相互支撑和联结。罩件36′和36″按形成流化床要求平直伸出。考虑到载荷力求热应力或热膨胀效应的传递作用,事实上罩件36′,36″与支撑元件35到35″是不相联的。格栅表面仍维持平直甚至当加载载荷时亦如此。
罩件36′,36″和支撑元件35到35′′′由陶瓷材料制成,在本实施例中它具有一个中心孔363和在其径向有一定间隔的另外6个相同直径的通孔364。
如图5所示,罩件36″分别联到物流传送管37,它穿过通孔363。这类罩件36″更像罩36′可有通孔364,它与罩件36′交替布置,例如第5到第10个罩件是联到物流传送管37上的罩件36″。管37的重量保证了对罩件36″的足够加固且罩件36′和36″的整体布置可通过彼此交迭的侧缘361和362加固。为使物流传送管37适应粒料流量,可通过代替罩件36′,36″使其中的流体输送管37为所需直径和高度来进行。
以粒料形成流化床所需的气体,经支撑元件35至35′′′中的开口351和罩件36′中与开口351相连的开口363和364,循序进入所示格栅上部的区域。在加热器5的格栅34a至34d处,燃烧气取道开口351、363及364,流出燃烧室3,进入相应各格栅的上部区域。此处燃烧气的速度值Vf足以使流化床中由分布器41提供的粒料保持在高湍流状态;这样就在34a至34d各格栅上部以这种移动的粒料形成流化床。由与罩件36″相连的物流传送管37使颗粒出现由格栅上部区域向格栅下部区域的迁移。由图5可见,物流传送管37各有一大直径进口区域371,安在罩件36″和这些格栅的上部。物流传送管37的另一端(与进口区371相对)有一端壁372,开有中心放料开口373。因此,与进口区371相比,放料开口373的直径dA较小,物流传送管37的直径du也小。
下面对格栅做一说明,颗粒可通过物流传送管37或放料开口373,经格栅或炉栅以上区域进入格栅以下区域。物料以对应方式由支撑元件35至35′′′和罩件36′及36″加于所有组成对应样式的格栅之上。
流化床中粒料的密度通常在相对于粒料逆流流经格栅的气体密度的1000倍以上。在本发明方法中,粒料以约200至600千克/平方厘米/小时的速率经外罩件36′的开口363和364及开口364与对应相连的罩件36″的物流传送管37迁移,开口363和364的直径范围为约20毫米至80毫米。流化气体的流动速率较低,取决于压力、温度和相应所采取气化方法的种类,一般为3至50千克/平方厘米/小时。格栅中通过开口363和364的气流能导致基本没有粒料能以与气体逆流方式通过格栅。
图8所示表明了开口363和364的直径为约60毫米,和颗粒直径为约1毫米的格栅总传递范围为约25%时气体速率与粒料流量之间的关系。在大于5米/秒的高气体速率Vh下(相对的粒料流速为Vf),粒料仅有较低程度的流动通过格栅。因此,如果气体速率超过粒料流动速率,则仅有少部分粒料通过格栅,这可解释为粒料流在气流中造成的湍流效应。就产生灰尘等而言,为了格栅中开口363和364的自动净化作用,开口363和364中的气体速率Vh高于粒料流动速率Vf较好。同时,为了达到有效的与粒料的热交换作用和形成流化床层,格栅以上气体速率Vt值接近于粒料速率Vf值较好。如上所述,气体在开孔363和364的高速率VR使粒料流经这些孔时流量下降。物流传送管37的进口区371周围的部分格栅的区域形成流化床中相对稳定的流动,该区域中气体速率低于该区域以外的气体速率Vt。结果是粒料密度在此区域外可能增大。放料开口373的横截面积与物流传送管37的横截面积之比基本相当于格栅开口总面积与格栅总面积之比。这意味着物流传送管中的流速基本相当于格栅以上区域中的气体速率Vt。
如上所述,由于进口区371中的粒料密度比流化床其它区域的稍大,进入进口区371的粒料量更大,因此进入物流传送管37的粒料比格栅中的其它开口363和364的要多。尽管在各种情况下流过放料开口373的气体都足以将粒料排放出物流传送管37,但会使为此所需能量和造成压差的能量增加。结果是一部分气体以分流的方式由进口373向格栅中相邻的开口363和364转向。这种过程是不可逆的,一直持续到物流传送管37中的气流流速降至使粒料流化的必需的值以下。此时物流传送管37中形成的流化床层散落,使流入物流传送管37的气流中断。则粒料以给料速度(与放料开口373的面积成比例)流过放料开口373。由于粒料可经放料开口373流出物流传送管37,比粒料经进口371流入物流传送管37更快,所以在物流传送管37中已收集到的粒料通向外部。这样气体可依次流入物流传送管37,使得留在其中的粒料和新进入物流传送管37的粒料气化,直至变换该过程为止。为高效运行,物流传送管37的长度h以毫米表示以设计为向下伸出格栅为宜,可等于或大于格栅能接受的气体最大压差的水柱毫米数与和表面积有关的粒料密度(克/平方厘米)之商。放料口373的直径大于粒料直径的60倍为宜。这可防止形成机械桥。为了形成均匀的流化床层和对物流传送管37均匀给料,即使是在使用大直径的格栅时,最好基本以相同的间隔安装许多物流传送管37。为了便于流化床层形成,所有放料口373的总横截面积应超过仅以粒料流为基准要求的面积的4倍。
粒料可由燃烧室3中形成的流化床至物流传送管7进入反应器1的上部区域。纵向排列的物流传送管7和反应器1之上的燃烧室3意味着粒料经物流传送管7的运动是借助于其自重。相应的观点也适用于粒料经加热器5和预热器13的运动。如图2所示,物流传送管7以排布在燃烧室3的中心区域为宜。但必要时,也可除这种排列外,在燃烧室3的边缘部分安置一物流传送管7′,或以之代替中心排布,如图2虚线所示。物流传送管7′的工作结构和类型与物流传送管7基本相同,因此,关于物流传送管7的说明也适用于物流传送管7′。中心安装的物流传送管7有一漏斗状进口42,位于燃料喷嘴25的区域内,具体说是以小间隔在其上部。如果物流传送管7′是水平安装的话,入口区42′应以漏斗状扩大。
在燃烧室的底部设有漏斗状部分向上扩大的凹陷区44和44′,其中除燃烧室中产生的灰尘外,可能还积聚有彼此粘着的聚结粒料(例如由于烧结作用或粒料被灰尘所沾染而造成的)。与凹陷区44和44′相邻的是排水管45和45′,附图中未完全示出,其关闭方式也未示出。已在凹陷区44和44′积聚的粒料可由粒料循环中通过排水管45和45′除去。这就确保了粒料循环及在循环中形成流化床层而不受积聚粒料或灰尘污染粒料的不良影响。反之这类粒料会导致诸如格栅或导流管7等至少是部分堵塞。
物流传送管7基本是纵向延伸,其一端有一伸入反应器1上部的出口46。与出口46连接为粒料分配装置并相隔一段距离的是一有一开口47′的节流孔板47,其直径比出口46小。还有一配料板48与孔板47远离出口46的一侧连接,作为折流板。
控制喷嘴49与物流传送管7的邻近出口46的部分连接。控制喷嘴由分布在物流传送管周边的开口形成。开口通过环形气道50与控制气体导管51连通。
以相对应的方式,可使节流孔板47″、配料板48′、控制喷嘴49′和环形气道50′与物流传送管7′相连。
根据需要由控制气体导管51供给的控制气体经控制喷嘴49流入物流传送管7与进料口46邻接的端部,在此产生喷射器的作用,借以使物流传送管7中的粒料的通过速率增加。通过改变经物流传送管7进入反应器1的粒料的通过速率,很可能影响到向反应器1的热量供给,并由此对操作工艺起作用。所用控制气体可以是诸如氮气等惰性气体。
粒料经物流传送管7由燃烧室3进入反应器1,在由出口46流出后,首先由节流孔板47使其部分转向。主要组分通过开口47′进至配料板48。其余组分则已在出口46和节流孔板47之间转向。由于少量供给的粒料组分转向和主要组分在配料板48中相互撞击,使得粒料在反应器1的上部得以基本均匀分布。这给反应器1中有效的热交换提供了必要条件。
经物流传送管7输入粒料也是这样,而使物流传送管7中的粒料相对于反应器1中生成的产物气体形成一有效的封闭。这种封闭不需要提供或操纵关闭部件(如双动阀),就能有效地阻止产物气体进入燃烧室3。这种由物流传送管7中粒料流产生的封闭作用即使在反应器1中的压力比燃烧室3高时也能形成。这种高压从安全的角度来看是有利的,因为这样就能保证空气或燃烧气不致从与反应器1连接的空气预热器13经粒料回流管15进入反应器1或从燃烧室3进入反应器1。
如图3所示,装在反应器的下部物流传送管7的进料室11被一多孔隔板52分为下室53和上室55。多孔隔板52可用有许多通孔的钢板做成,其上装有金属丝网层59。下室53有一连接件61,用以提供传送气体或流化气体。这些气体可以是诸如惰性气体;但也可用气化剂(除火焰炉气外)加入下室53作为传送气体,起气化作用。气化物质(可与传送气体一起)经连接件63加入上室55(其方式图中未示出)。气化物质在上室55由经多孔隔板51流出下室53的气体以流化床的方式带起。以类似方式,需转化的液体气化物质和/或气件可直接按适宜的配置进入反应器1。
在上室53以气化床方式带起的气化物质经多根进料管9送至反应器1的下部。从而经进料管9向反应器1供给基本均匀分布于传送气体中的气化物质,进料管9伸入上室55的一端都由管头关闭件65所关闭,同时在相对于纵向进料管9横向延伸的管状连接件上形成一水平进口67。在反应器端部与进料管9的出口69相连的罩件71装在出口69的一处,用以阻止粒料可能经出口69进入进料管9并因此进入进料室11。
外管73从装在进料室11外部的部分至与出口69相邻的部分与一或多管进料管相连,它将进料管9包住并在其下端均相对于所连进料管9关闭并有进口连接件75,横向延伸至纵向的外管73(也有进料管9)处。气化剂如水、蒸汽或载CO2气体或待转化气体可经进料管9和所连外管73之间的中间空间由进口连接件75进入反应器1。
经此进入反应器1的下部区域的气化剂、气化物质或待转化气体向上部的方向流入反应器1,如上所述,在此处,加热器5和燃烧室3加热的粒料经物流传送管7加入。由在反应器1上部的节流孔板47和配料板48分配的粒料与供给反应器1的气体逆流方向进入反应器带有斜壁77的下部。其底部构成了粒料的收集区79。积聚在反应器1底部的冷却粒料大多是沿斜壁17滑落后落入收集区79;与收集区79连有一回流管15,粒料经此管进入空气预热器13。
粒料与气体逆流式进入反应器1,连同反应器1中产生的产物气体一起,以流化床形式在气体中带起。产生的粒料与气体紧密的混合表明粒料与气体之间发生了高效率的热交换作用。如上所述,产物气体被物流传送管7中的粒料阻止,不能进入燃烧室3,而通过从反应器1上部伸出的产物气体导管81留在反应器的上部。
反应器1中良好的换热作用保证了细颗粒固体或供给的液体气化物质和/或待转化气体能同时与气化剂反应,以按下列反应方程生产产物气体
固体气化物质已在进料室11中与相当于气化剂传送气体良好混合,并经进料管9进入反应器1,这就导致了与粒料的良好接触,从而提供了有效的换热作用。则反应器1中发生的化学反应的反应时间就更矩。其反应时间取决于气化物质的粒径,例如,就粒径为约200目(相当于74微米)的煤的气化而言,反应时间在约0.1-0.2秒之间。在约800-900℃的较低温度下,该化学反应停止;在此温度下,积聚在收集区79中的粒料所带的过剩热量经回流导管15传送给空气预热器13。但也可在粒料重建的闭路循环中使用,例如产生蒸汽、预热高炉空气或干燥诸如将要在燃烧室3中燃烧的生物材料。
为了在使用含高硫分气化物质时使硫组分沉淀,还可向反应器1中另加细颗粒石灰,石灰粘附了硫组分,形成渣子,加料方式图中未示出。此渣子可例如同粒料一起从反应器1中出料,且在粒料返回至传送管43之前,诸如任何泄出的灰分等渣子均可例如经筛分分离出来。
根据本发明,燃烧室中产生的灰分可与灰分污染的粒料一起经排水管44和44′从燃烧室中排出。这保证了即使在使用含有更多基本灰分的燃料时也能顺利实施。就此而论,在粒料循环中,主要部分的粒料如上所述是经物流传送管7进入反应器1。同样,为了脱除灰分,少量部分的粒料进入凹陷区44和44′,在粒料循环之外。这部分粒料可经排水管44和44′除去。在粒料中的灰分已离掉或积聚或破坏的粒料已分离掉之后,粒料可返回到粒料循环中,其方式未示出。
本发明细颗粒固体气化物质的气化过程是在下列参数条件下进行的。重量和体积数据对应于生成的产物气体的体积为1Nm3。因此在循环中流动的粒料的重量为7.5千克。粒料在约200℃的温度下经分配器41加入加热器5中。在0.65mWc压力和25℃温度下经燃料喷嘴25将燃料加入燃烧室3中;此时提供的热量(包括空气预热部分)为3.0兆卡。在空气预热器13中已将由燃烧空气嘴26供给的空气预热至700℃,并在0.65mWc压力下供气。在约1250℃的温度下,已在加热器5和燃烧室3中加热的粒料经物流传送管7离开燃烧室3。
在30℃温度和8.5mWc压力下经进料室11向反应器1中供给比重为0.31千克的气化物质。在140℃温度和同样压力下供给比量为0.34千克的气化剂。在1200℃温度和7.5mWc压力下比容为1.0Nm3的反应器中产生的产物气体离开反应器1。而经回流导管15由反应器1传送至空气预热器13的粒料则处于约800℃到达空气预热器13的空气的比容为6.5Nm3,温度为约50℃,压力为0.95mWc。在预热器13中预热的空气在约700℃温度和0.75mWc压力下离开,以便经燃烧空气导管31加至燃烧空气喷嘴26。此时,粒料在空气预热器13中冷却至约200℃,并由此经传送导管43和分配器41送回给加热器5。
在上述操作过程中,使用饱和蒸汽作气化剂。至于燃料消耗方面,热量仅如上述规定,可使用不同的燃料。就在这些条件下生成的产物气体而言,可获得约95%体积的CO和H2。
权利要求
1.反应器(1)中添加气化剂使液体和/或细粒固体气化物质气化和/或气体转化的方法,其中用载热粒料的反应器供工艺热,处于闭环回流中的粒料在加热器(5)中用燃烧室(3)中产生的燃烧气加热并逆流经反应器(1)而送入气化物质或待转化气体及气化剂中,然后回送入加热器(5)再加热,其特征是粒料和燃烧气在加热器(5)中设置的至少一块格栅(34、34a、34b、34c、34d、34e)上形成流化床,粒料从加热器(5)流入邻近的燃烧室(3),其中与燃烧气一起形成流化床,粒料再经物流传送管(7,7′)从燃烧室(3)流入反应器(1)上部,其中通过物流传送管(7,7′)的物料形成密封而阻止反应器(1)中生成的气流通,并且粒料在反应器(1)中与气化物质和/或待转化气一起形成一层或多层流化床。
2.按权利要求1所述的方法,其特征是粒料流通管通过调节气力传送器(40)的传送量而加以改变并经反应器(1)中的物流传送管(7,7′)和空气预热器(13)中的物流传送管(53)而加以调节。
3.按权利要求1或2所述的方法,其特征是固体气化物质送入进料室(11),其中与传送气一起经至少一根进料管(9)送入反应器(1)。
4.按权利要求1-3之一所述的方法,其特征是从邻近进料室(11)和/或一块或多块格栅的反应器(1)底经上顺序形成流化床。
5.按权利要求1-4之一所述的方法,其特征是粒料在送回加热器(5)之前经过空气预热器(13),为的是预热燃烧室(3)的燃烧空气。
6.按权利要求1-5之一所述的方法,其特征是经可闭合排泄管(45,45′)从燃烧室(3)去除结块和/或灰污染粒料或灰。
7.按权利要求1-6之一所述的方法,其特征是经调节气嘴(49)将调节气送入邻近物流传送管(7,7′)的出料开口(46)的部分以便通过喷射作用提高经过物流传送管(7,7′)的物料流通速度。
8.按权利要求1-7之一所述的方法,其特征是所用固体气化物质可为细粒沥青煤、褐煤、泥煤、炭或生物物质和/或所用液体气化物质可为重质或轻质烃和醇,而所用气化剂可为任何含H2O和任何含CO2物质,如蒸汽,含CO2废气,如高炉煤气等。
9.按权利要求1-8之一所述的方法,其特征是用气态烃,如无燃气作待转化气。
10.按权利要求1-9之一所述的方法,其特征是在燃烧室(3)中燃烧气达到约1350-1500℃。
11.按权利要求1-10之一所述的方法,其特征是蒸汽直接送入反应器(1)作为气化剂。
12.按权利要求1-11之一所述的方法,其特征是相对加热器(5)或空气预热器(13)而言反应器(1)中形成高压。
13.按权利要求1-12之一所述的方法,其特征是用基本上球形的粒料,直径约0.5-3mm。
14.按权利要求1-13之一所述的方法,其特征是用氧化物,如氧化铝粒料。
15.按权利要求1-14之一所述的方法,其特征是水直接送入反应器(1)作为气化剂。
16.按权利要求1-15之一所述的方法,其特征是通过在反应器(1)和/或加热器(5)和/或空气预热器(13)中确定适当的流化速度,可使快速流动粒料本身以及格栅表面和各容器内表面具有自身清洁作用。
17.按权利要求1-16之一所述的方法,其特征是经过至少一根可预定直径和可预定高度的物流传送管(37)实现粒料从格栅(34a,34b,34c,34d,34e)之一到下一层相邻格栅的传输。
18.实施权利要求1-17之一所述的方法的装置,其中包括加热器(5),燃烧室(3),反应器(1)和与加热器相连的粒料回流管(43),其特征是加热器(5),燃烧室(3)和反应器(1)基本上立式设置,加热器(5)设在其紧邻的燃烧室(3)之上并设有至少一块格栅(34a,34b,34c,34d,34e)且在其上部设有粒料分布器(41),沿周边分布的燃料嘴(25)设在燃烧室(3)的下部并且沿周边分布的燃烧室气嘴之下,物流传送管入口设在燃料嘴(26)所在区域并且粒料分布设备相隔一段距离与设在反应器(1)上部的物流传送管(7,7′)出口(46)相连。
19.按权利要求18所述的装置,其特征是该分布设备有一邻近物料传送管(7,7′)出口(46)的节流孔板(47)和/或受出口(46)或节流孔板(47)作用的分布板(48)。
20.按权利要求18或19所述的装置,其特征是与调节气管(51)相连的至少一个调节气嘴(49)与邻近出口(46)的物流传送管(7,7′)区域相连。
21.按权利要求18-20之一所述的装置,其特征是与反应器(1)相连的包括进料室(11),经至少一根进料管(9)与其相连,其中具有带传送气连接管(61)的下部室(53)和设于下部室(53)上部的上部室(55)并且用孔板(51)隔开,上部室带气化物质连接管(63)。
22.按权利要求21所述的装置,其特征是进料管(9)在伸入进料室(11)上部室(55)的一端带有端盖(65)并且开有横向入口(67)和/或与反应器侧出口(69)相隔一定距离的顶盖(71)。
23.按权利要求21或22所述的装置,其特征是至少一根气化剂进料管由进料管(9)的外套管(37)构成。
24.按权利要求18-23之一所述的装置,其特征是设有基本上立式空气预热器(13),用以预热燃烧室(13)的燃烧空气,其上部经回流管(15)与反应器(1)下部相连,而下部与传送管(43)相连。
25.按权利要求18-24之一所述的装置,其特征是燃烧室底有至少一片凹陷区域(44,44′)其中插入可关闭排泄管(45,45′)。
26.按权利要求18-25之一所述的装置,其特征是反应器(1)带有一块或多块格栅。
27.按权利要求18-26之一所述的装置,其特征是加热器(5)和/或反应器(1)的至少一块或多块格栅(34a,34b,34c,34d)由基本上六边形陶瓷元件构成,且每一陶瓷元件又包括支撑元件(35,35′,35″,35′′′)和位于其表面上的片状罩件(36′,36″)。
28.在流化床中固体粒料和流化气之间进行换热的高温换热器,其中包括设有一块格栅(34a)或几块相互隔开的层叠格栅(34a,34b,34c,34d)的容器,所说格栅板上开有供气通孔,其特征是所说格栅由基本上六边形陶瓷件构成,而每一陶瓷又包括支撑元件(35,35′,35″35′′′)和位于其上的板状罩件(36′,36″)。
29.按权利要求28所述的换热器,其特征是支撑元件(35-35′′′)相邻侧交替设有基本上水平取向啮合凸出部分(352)和啮合凹陷部分(353)以使相邻支撑元件(35-35′′′)上分别与啮合凹陷部分(353)和啮合凸出部分(352)相互配合。
30.按权利要求28或29所述的换热器,其特征是为制成下侧呈拱顶形的格栅(34a-34d),就从中心设置的短支撑元件(35)开始往向向外设置长度逐渐加长的支撑元件(35′,35″,35′′′)。
31.按权利要求28-30所述的换热器,其特征是用固定在容器侧壁上的弹簧(358)给支撑元件(35,35′,35″,35′′′)施加预应力。
32.按权利要求28-31之一所述的换热器,其特征是支撑元件(35,35′,35″,35′′′)带有通孔(351)。
33.按权利要求28-32之一所述的换热器,其特征是罩件(36′,36″)有侧边(361,362),均以不同倾斜角交替倾斜布置,以使其顶盖元件相互支撑。
34.按权利要求28-33之一所述的换热器,其特征是罩件(36′)带有一系列均匀分布的通孔(361,364)。
35.按权利要求28-34之一所述的换热器,其特征是罩件(36″)具有直径和长度可根据粒料传送而预定的物流传送管(37),物流传送管经过中心通孔(363)。
36.在流化床中固体粒料和流化气之间进行换热的高温换热器,其中包括设有一块格栅(34a)或几块相互隔开的层叠格栅(34a,34b,34c,34d)的容器,所说格栅板上开有供气通孔,其特征是所说格栅设有直径和长度可根据粒料传送而预定的物流传送管(37),该物流传送管经过格栅(34a,34b,34c,34d)中心通孔(363)。
37.按权利要求35或36所述的换热器,其特征是物流传送管(37)具有大直径入口区(371),设在所说格栅罩件(36″)之上和/或物流传送管(37)远离入口区(371)的一端具有带中心出料口(373)的端壁(372)。
全文摘要
反应器(1)中气化剂气化液体和/或细粒固体气化物质和/或转化气体的方法中加热器(5)中燃烧室(3)之燃烧气加热闭合回路中的热载体后逆流供反应热,粒料和燃烧气在格栅(34,34a,34b,34c,34d,34e)上形成流化床,粒料从加热器(5)流入燃烧室(3)后经物流传送管(7,7′)进入用气化物质和/或待转化气形成流化床的反应器(1)上部。经过物流传送管的粒料形成密封而阻止反应器(1)中成品气通流。
文档编号C10J3/56GK1059753SQ9110886
公开日1992年3月25日 申请日期1991年9月11日 优先权日1990年9月11日
发明者默克·T·马诺里克, 琼-保罗·范登浩克 申请人:科蒂克股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1