高浓度煤-水浆液的制备方法

文档序号:5114881阅读:208来源:国知局
专利名称:高浓度煤-水浆液的制备方法
技术领域
本发明涉及高浓度煤-水浆液的制备方法。
为了改进煤的可运输性、可贮存性以及易于加工,通常采用的方法是将煤研磨成细粉末并以浆液的形式分散于水中。这种煤-水浆液是一种可直接燃烧的燃料,但是从燃烧效率来考虑,该煤-水浆液应具有高浓度,而从易于运输和加工来考虑,该煤-水浆液又应具有低的粘度。为了解决高浓度和低粘度这一相互矛盾的需求,迄今为止已尝试了各种各样的方法。
作为高浓度煤-水浆液的湿式制备方法,已知的有一种高浓度研磨方法,在该方法中,通过球磨机将相对较大量的碎煤、水和分散剂一起研磨。然后将粗大的颗粒去除,已知的还有一种低浓度研磨方法,在该方法中,通过球磨将相对较少量的碎煤和水一起研磨,以得到一种其中煤的浓度小于60%(重量)的低浓度煤-水浆液,再将该浆液干燥以形成干燥的饼,最后将干燥的饼分散于水中以得到高浓度的煤-水浆液。
过去,主要是使用低浓度研磨方法,因为它容易通过分级而除去粗大的颗粒。例如,将煤和水加入第一级球磨机中以产生低浓度的煤-水浆液,把该浆液用水稀释并过筛以去除粗大的颗粒,用干燥器将其干燥得到干燥饼,把该干燥饼连同水和分散剂一起加入到第二级球磨机中以得到高浓度煤-水浆液(日本专利申请公开63-15893//1988),或者将碎煤和水通过管磨机处理以得到低浓度浆液,将该浆液分成两份,一份经分级而去除粗大颗粒,接着将其干燥以得到细颗粒的干饼,另一份通过湿式超细研磨机处理,然后与上述干饼混合而得到高浓度煤-水浆液(日本专利申请公开63-51493/1988)。
然而,这些方法都有缺点,就是很难得到在高浓度和低浓度两方面都满意的产品,并且,它们包括复杂的操作以及需用干燥器。为了克服现有技术的缺点,本发明的主要目的是提供一种用于制备稳定、高浓度、低粘度煤-水浆液的高效率低能耗的方法。
着眼于这样的事实,即高浓度和低粘度煤-水浆液取决于浆液中的细煤颗粒间的孔隙比率,即孔隙率,而较低的孔隙率可提供较高浓度和较低粘度的煤-水浆液,本发明人研究了煤细颗粒的粒径分布与孔隙率之间的关系。
结果,找到了降低孔隙率的方法,即在有剪切力存在的条件下将含有大粒径的粗颗粒煤-水浆液与含有小粒径的细颗粒煤-水浆液混合,在此情况下,孔隙率随粗颗粒的粒径、细颗粒的粒径及混合比而变化,并且含有这种细颗粒的高浓度煤-水浆液可用塔式研磨机制得,由此完成了本发明。
根据本发明,提供了一种高浓度煤-水浆液的制备方法,该方法包括用破碎机将原煤破碎到平均粒径为300~800μ,往该碎煤中加入水和分散剂并用球磨机或棒磨机研磨该混合物以得到煤的平均粒径为20~60μ和煤的浓度为60~80%(重量)的高浓度煤-水浆液,并将由此得到的高浓度煤-水浆液的一部分用塔式研磨机来研磨,以得到一种煤的平均粒径为5~10μ和煤的浓度为60~80%(重量)的高浓度煤-水浆液,以及在剪切力下将10~40%(重量)的研磨过的浆液和90~60%(重量)的用球磨机或棒磨机粉碎过的浆液混合,借此来降低孔隙率。
下面参照表示本发明实施例的流程图来详细地解释本发明。在

图1中,1表示原煤,2表示原煤装料斗,3表示破碎机,4表示碎煤装料斗,5表示恒速加煤器,6表示加入的水,7表示一种添加剂,8表示球磨机或棒磨机,9表示收集槽,10表示再循环浆液,11表示塔式研磨机,12表示收集槽,13表示混合器,以及14表示产物。F表示流量计,P表示泵。
首先将原煤1加入破碎机3中,该破碎机例如是一种锤式破碎机或冲击式破碎机,将原煤破碎到平均粒径为300~800μ。将该碎煤从碎煤装料斗4通过恒速加煤器5与需加入的水和分散剂7(例如阴离子表面活性剂)一起加入球磨机或棒磨机8中。在球磨机或棒磨机8中,煤颗粒被研磨至20~60μ的粒径,以得到一种煤浓度为60~80%(重量)的高浓度煤-水浆液。
把从球磨机或棒磨机8中排出的浆液贮存于收集槽9中,将数字为10的那部分返回球磨机或棒磨机8中进行再循环。再循环的数量较佳为从球磨机或棒磨机8中排出的浆液的10~50%(重量)。通过这种再循环,由于从球磨机或棒磨机中排出的浆液含有细颗粒,这些细颗粒在球磨机或棒磨机8中与粗颗粒一起混合,这样就降低了在球磨机或棒磨机8中颗粒的孔隙率,结果就降低了粘度,提高了流动性,并因此改善了球磨机的运转。这导致了顺利的研磨并降低了能耗。
收集槽9中的高浓度煤-水浆液的一部分送至混合器13中。收集槽9中的高浓度煤-水浆液的另一部分送至塔式研磨机11中。例如,该塔式研磨机的一种是以TOWER MILL的商品名出售。这种塔式研磨机在其中心部位装有慢速螺旋桨,把球和原料一起装入该塔式研磨机中。当原料通过螺旋桨旋转而运动时被研磨。通过塔式研磨机11将煤颗粒研磨至平均粒径为5~10μ。这种塔式研磨机可有效并优越地用于高浓度煤-水浆液的研磨。
10~40%(重量)的经过塔式研磨机11处理的浆液与90~60%(重量)只经过球磨机可棒磨机处理的浆液送至混合器13中并在其中混合。在这种混合中,需使用能产生高剪切力的那种混合器,以使得由塔式研磨机11处理过的浆液中含有的平均粒径为5~10μ的煤颗粒与那些只由球磨机或棒磨机处理过的浆液中含有的平均粒径为20~60μ的煤颗粒均匀地混合,以降低孔隙率。最好串联地布置两台或更多台混合器。由混合器排出的浆液具有降低了的孔隙率,因而具有显著降低的粘度。如果需要可将该粘度降低了的浆液分级以得到产物14。这样,可以不用干燥器而获得所需的高浓度和低粘度的煤-水浆液。
在本发明中,在通过球磨机或棒磨机处理的浆液中,煤颗粒的平均粒径为20~60μ,而在进一步经过塔式研磨机处理的浆液中,煤颗粒的平均粒径为5~10μ。在剪切力存在的条件下,按预定的比例来混合这两种浆液(即90~60%(重量)的前者和10~40%(重量)的后者),可使孔隙率降低并使其粘度显著降低。下面将参照实施例来对这一情况作进一步的详细说明。
图2表明了煤-水浆液混合物(煤浓度68.5%)的混合比与孔隙率之间的关系,以及该混合比与粘度之间的关系,所说的混合物包括一种只经过球磨机或棒磨机处理的,其平均粒径为51μ的煤-水浆液以及另一种进一步经过塔式研磨机研磨的,平均粒径为5.2μ的煤-水浆液。正如该图所示,当把由塔式研磨机研磨过的浆液加入到只经球磨机或棒磨机处理过的浆液中时,孔隙率随着所说加入量的增加而降低,并且粘度也随之降低。但是,当所说加入量超过约20%后,孔隙率则增大并且粘度急剧增大。因此,当使用这两种具有不同平均粒径的浆液时,将20%经过塔式研磨机处理的浆液和80%只经过球磨机或棒磨机处理的浆液混合即可得到高浓度的煤-水浆液。所得的浆液具有低于800CP的低粘度(甚至在煤浓度高达68.5%(重量)的情况下亦是如此)以及良好的稳定性。
图3表明了煤-水浆液混合物(煤的浓度为67.1%)的混合比与孔隙率之间的关系以及该混合比与粘度之间的关系,所说的混合物包括一种只经过球磨机或棒磨机处理的,其平均粒径为40μ的煤-水浆液以及另一种进一步经过塔式研磨机研磨的,其平均粒径为8.4μ的煤-水浆液。在这种情况下,用75%(重量)只经过球磨机或棒磨机处理的浆液与25%(重量)进一步经过塔式研磨机处理的浆液混合,可得到最小的孔隙率和约为500CP的最小粘度。
如上所述,只经过球磨机或棒磨机处理的浆液与进一步经过塔式研磨机处理的浆液的混合比例要取决于它们各自的平均粒径。因此,只要适当地调整各自的平均粒径及混合比,即可容易地获得高浓度、低粘度并且稳定的煤-水浆液。
在用破碎机(如冲击式破碎机等)将煤破碎时,随着粒径的降低,所需的能量相应增高,但是,对于只将平均粒径降至约300μ的情况来说,则不需要十分高的能量。然而,如果要破碎至平均粒径为300μ或更小,则需要很高的能量。为了将煤破碎至平均粒径为300μ或更小,使用球磨机或棒磨机就具有相对较低能耗的优点。另外,在球磨机或棒磨机的破碎过程中,为了破碎至平均粒径为20μ或更小,则会导致所需的能量迅速增高。为了将煤破碎至平均粒径约为20μ或更小,使用塔式研磨机就具有相对较低能耗的优点。在本发明中,使用破碎机(如冲击式破碎机等)将煤破碎至平均粒径为300~800μ,用球磨机或棒磨机将煤破碎至平均粒径为20~60μ,用塔式研磨机将煤研磨至平均粒径为5~10μ,这样考虑的目的是为了降低用于煤的研磨所需的能耗。
在本发明中,在有剪切力存在的条件下,按符合要求的混合比把用球磨机或棒磨机在高浓度下破碎的,含有平均粒径为20~60μ的煤的浆液与用塔式研磨机在高浓度下研磨的含有平均粒径为5~10μ的煤颗粒的浆液混合,由此得到一种具有最小孔隙率的,高浓度,低粘度并且稳定的煤-水浆液。另外,由于在高浓度下进行破碎和研磨,因此本发明可省去对浆液的干燥过程,并且降低了能耗及简化了操作。再有,本发明根据煤颗粒的直径把破碎机和研磨机结合起来使用,借此进一步降低了能耗。
权利要求
1.一种高浓度煤-水浆液的制备方法,该方法包括用破碎机将原煤破碎至平均粒径为300~800μ,向该碎煤中加入水和分散剂,并用球磨机或棒磨机研磨该混合物以得到一种煤颗粒平均粒径为20~60μ和煤浓度为60~80%(重量)的高浓度煤-水浆液,用塔式研磨机来研磨所获的高浓度煤-水浆液的一部分以得到一种其中煤颗粒平均粒径为5~10μ和煤浓度为60~80%(重量)的高浓度煤-水浆液,然后在有剪切力存在的条件下将10~40%(重量)的所述研磨过的浆液与90~60%(重量)的只经过球磨机或棒磨机破碎的所说浆液混合,以降低所说的孔隙率。
2.根据权利要求1的方法,其中10~50%(重量)的由球磨机或棒磨机中排出的所述浆液再返回球磨机或棒磨机中以进行再循环。
全文摘要
(1)用破碎机将原煤破碎至平均粒径为300—800μ,向该碎煤中加入水和分散剂,并用球磨机或棒磨机来研磨该混合物以得到一种其中煤颗粒的平均粒径为20—60μ的高浓度煤-水浆液。(2)用塔式研磨机来研磨所说高浓度煤-水浆液的一部分以得到一种其中煤颗粒的平均粒径为5—10μ的高浓度煤-水浆液。(3)在有剪切力存在的条件下,将90—60%(重量)的在步骤(1)中得到的煤-水浆液与10—40%(重量)的在步骤(2)中得到的煤-水浆液混合。这样降低了浆液的孔隙率并产生一种低粘度,高浓度的煤-水浆液。
文档编号C10L10/18GK1062754SQ91108299
公开日1992年7月15日 申请日期1991年11月28日 优先权日1990年12月21日
发明者都甲仁, 藤村英夫, 渡边宪久, 大平正明 申请人:日本科姆株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1